Материал электродов для контактной сварки. Уход за электродами точечных машин

СОЮЗ СОВЕТСКИХСОЦИАЛИСТИЧЕСКИХРЕСПУБЛИК 1)5 В 23 К 11/10 ИСАНИЕ ИЗОБРЕТ 4ь ".,".,.;.;,: 1 рудования для контактнои точечнои сварки. Цель изобретения - упрощение конструкции и повышение чистоты обработанной поверхности, На обоих торцах инструмента 1 расположены параллельно друг другу зубья 7, Каждый из зубьев 7 выполнен с двумя режущими кромками 8 и опорной поверхно-., стью 5 между ними, Устройство зажимают между электродами 4 усилием, развиваемым приводом машины для контактной сварки. При вращении устройства режущие кромки 8 срезают слой металла, а опорные поверхности 5 выглаживают обрабатываемый участок по всему рабочему торцу электрода. 4 ил,ек- ноКТмо- боГОСУДАРСТВЕННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР АВТОРСКОМУ СВИДЕТЕЛЬС(56) Авторское свидетельство СССРМ 490579, кл. В 23 В 29/14, 1974.Слиозберг С.КЧулошников П.ЛЭтроды для контактной сварки, Л.; Машстроение, 1972, с. 79, рис. 44 а,(54) УСТРОЙСТВО ДЛЯ ЗАТОЧКИ ЭЛРОДОВ МАШИН ДЛЯ КОНТАКТНОЙЧЕЧНОЙ СВАРКИ(57) Изобретение относится к сварке ижет быть использовано при разработке 1595635 А 1Изобретение относится к сварке и может быть использовано при разработке оборудования для контактной точечной сварки.Цель изобретения - упрощение конструкции и повышение чистоты обработанной поверхности.На фиг. 1 схематично изображено устройство для заточки сферической рабочей поверхности эелктрода, осевое сечение; на фиг. 2 - то же, вид сверху; на фиг, 3 - устройство для заточки плоскоконических и плоскоконических с выступом рабочих поверхностей электрода, пример выполнения; на фиг, 4 - то же, вид сверху.Устройство для заточки электрода состоит из инструмента 1, установленного в обойме 2 с ручкой 3 (фиг, 2), или ручка 3 закреплена непосредственно на самом инструменте 1 (фиг. 4), В инструменте 1 на обоих торцах выполнено углубление, задающее профиль обрабатываемой поверхности электрода 4 и образующее опорную поверхность 5. На торцах инструмента 1 выполнены канавки б, образующие на опорной поверхности параллельные зубья 7 с двумя режущими кромками 8,У инструмента 1, предназначенного для обработки электродов с рабочей поверхностью плоскоконической или плоскоконической с выступом формы (фиг. 3 и 4), канавки б размещены симметрично относительно продольной оси и на торцах выполнены центрирующие глухие отверстия 9.Заточку электродов осуществляют следующим образом.. Устройство зажимают между электродами 4, установленными в электрододержателях сварочной машины, усилием сварки, при этом электроды опираются на опорные поверхности 5 на зубьях 7 инструмента 1. Устройство центрируется по электродам, Одновременно участки опорной поверхности 5, воспринимая усилие от электродов,сминают выступы на поверхностях и упругодеформируют материал электродов. Привращении устройства рукояткой 3 вокругэлектродов кромки 8 срезают слой металла,5 Обрабатываемая поверхность электродовпо всей длине режущей кромки плотно прилегает к участкам 5 опорной поверхности;так как режущая кромка является частьюопорной поверхности, Скользящие по элек 10 тродам под нагрузкой участки опорной поверхности 5 выглаживают обрабатываемыйучасток по всему торцу зуба 7, тем достигается высокая чистота обработанной поверхности, При расположении режущей кромки15 точно по оси инструмента 1 обрабатываетсяи выглаживается вся поверхность торцаэлектрода.Обработка электродов плоскоконической формы с выступом продолжается до20 тех пор, пока цилиндрический выступ наторце не достигнет дна цилиндоического отверстия 9,Предлагаемое устройство для заточкиэлектродов позволяет обрабатывать рабо 25 чие поверхности электродов без переналадки машины по усилию. При этом достигаетсявысокая чистота и точность обработки. Простота конструкции устройства обеспечиваетнизкую стоимость изготовления при приме 30 нении серийного оборудования,Формула изобретенияУстройство для заточки электродов машин для контактной точечной сварки, снабженное зубьями и канавками между ними,35 предназначенными для удаления стружки,о т л и ч а ю щ е е с я тем, что, с цельюупрощения конструкции и повышения чистоты обработанной поверхности, зубья расположены параллельно друг другу, а каждый40 из зубьев выполнен с двумя режущимикромками и опорной поверхностью междуними для выглаживания рабочей поверхности электрода.1595635 оставитель А. Антошехред М,Моргентал орректор Н.Ревска опча актор Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101 Заказ 2876 Тираж 645 Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-З 5, Раушская наб., 4/5

Заявка

4440071, 03.05.1988

ПРЕДПРИЯТИЕ ПЯ Г-4086

КРАСНОВ ФЕЛИКС ИВАНОВИЧ

МПК / Метки

Код ссылки

Устройство для заточки электродов машин для контактной точечной сварки

Похожие патенты

Движения.Во время обратного хода в контакт вступает, правая поверхность верхнего плеча двуплечего рычага 8 и левая поверхность соседнего зуба рейки 5. Направление действия возникающей при этом силы реакции зуба рейки 5 на рычаг 8 меняется на противоположное, Так как в этом направлении ничто не препятствует переме 119953Изобретение относится к области - .сварки, в частности к устройствамдля заточки микросварочных электродов, и может найти применение в приборостроительной и радиотехническойпромышленности.Цель изобретения - повышение качества заточки.Поставленная цель достигаетсяза счет применения подвижного абразивного инструмента.На фиг. 1 представлен заточник,общий вид; на фиг. 2 - траекториядвижения затачиваемого торца элект, рода...

Участок торца соединит обе стороны стержня.1. После этого стержень 1 устанавливают перпендикулярно ситалловой пластине 2 и шлифуют на некоторую величину 11, определяемую из соотношениягде и. - угол начальной заточки торца;Д в.линейный размер " орда необходимый для свагки КОНКРетного материала,Размер д увеличивается при увеличении толщины свариваемых деталей 111 - высота участка торца, которую необходимо сошлифовать,чтобы получить требуемый размер торца).1)ри увеличении угла Ю, для получения размера торца О размер 1 увеличивается.уотройство заточки, кроме электрода 1 и ситалловой пластины 2, содеркит корпус 3, закрепленный на рукоятке 4 с помсщью упора 5 и гайки б. На корпусе 3 закреплен винтовой упор 7, предназначенный для...

На затачиваемом инструменте образуется зона среза металла 12, на которой параллельно горизонтальной оси корпуса для безопасности расположены оси ручек 13, выполненных из любого прочного, легкого материала, служащих для меньшего приложения усилия на ручки в процессе заточки.Ручной инструмент для заточки режущих кромок работает следующим образом.При заточке режугцих кромок инструментов с клинообразной формой лезвия (коса, топор и т.д.) в полевых условиях затачиваемый инстумент 3 носком упирают в любой твердый предмет или в грунт. Ручной инструмент берут за ручки 13 и угловыми 5 10 15 20 25 30 35 вырезами 2 направляют в зону среза ме. талла 12, Гайкой-барашком 9 регулирующий винтосвобождается от фиксации и устанавливается сферической...

Рассказ об электрододержателях и электродах для точечной сварки мы решили выделить в отдельную статью из-за большого объема материала по этой теме.

Электрододержатели машин точечной сварки

Электрододержатели служат для установки электродов, регулирования расстояния между ними, подвода сварочного тока к электродам и отвода тепла, выделяющегося при сварке. Форма и конструкция электрододержателей определяется формой свариваемого узла. Как правило, электрододержатель представляет собой медную или латунную трубу с конусным отверстием для установки электрода. Это отверстие может быть выполнено по оси электрододержателя, перпендикулярно оси или под углом. Часто одна и та же машина может комплектоваться несколькими вариантами электрододержателей для каждого вида электродов — в зависимости от формы свариваемых деталей. В некоторых машинах малой мощности электрододержатели могут совсем не входить в комплектацию, так как их функции выполняют сварочные хоботы.
В машинах стандартной комплектации чаще всего используются прямые электрододержатели (рис. 1), как наиболее простые. В них могут устанавливаться электроды различной формы. В случае сварки деталей больших размеров с ограниченным доступом к месту сварки целесообразно использовать фигурные электрододержатели с простыми электродами прямой формы. Крепятся они в электрододержателях за счет конусной посадки, штифтов или винтов. Удаление электрода из держателя производят легкими постукиваниями деревянным молотком или специальным экстрактором.

Электроды для точечной сварки

Электроды для точечной сварки служат для сжатия деталей, подвода сварочного тока к деталям и отвода тепла, выделяющегося при сварке. Это один из самых ответственных элементов сварочного контура машины точечной сварки, потому что форма электрода определяет возможность сварки того или иного узла, а его стойкость — качество сварки и продолжительность бесперебойной работы машины. Различают прямые (рис. 4) и фигурные электроды (рис. 5). Некоторые примеры применения прямых электродов приведены в таблице 1. Многие прямые электроды изготавливаются в соответствии с ГОСТ 14111-77 или ОСТ 16.0.801.407-87.

У фигурных электродов ось, проходящая через центр рабочей поверхности, значительно смещена относительно оси посадочной поверхности (конуса). Их применяют для сварки деталей сложной формы и узлов в труднодоступных местах.

Конструкция электродов для точечной сварки

Электрод для точечной сварки (рис. 6) конструктивно состоит из рабочей части (1), средней (цилиндрической) части (2) и посадочной части (3). Внутри тела электрода проходит внутренний канал, в который вводится трубка подачи охлаждающей воды электрододержателя.
Рабочая часть (1) электрода имеет плоскую или сферическую поверхность; диаметр рабочей поверхности d эл или радиус сферы R эл выбирают в зависимости от материала и толщины свариваемых деталей. Угол конуса рабочей части обычно составляет 30°.
Средняя часть (2) обеспечивает прочность электрода и возможность использования экстракторов или иного инструмента для демонтажа электродов. Производители применяют различные методики для расчета размеров электродов. В СССР согласно ОСТ 16.0.801.407-87 были установлены типоразмерные ряды:

D эл = 12, 16, 20, 35, 32, 40 мм

L = 35, 45, 55, 70, 90, 110 мм

В зависимости от максимального усилия сжатия машины:

D эл = (0,4 - 0,6)√F эл (мм).

Где: F эл — максимальное усилие сжатия машины (даН).

Посадочная часть (3) должна иметь конусность для плотной установки в электрододержатель и предотвращения протечек охлаждающей воды. Для электродов диаметром 12-25 мм конусность составляет 1:10, для электродов диаметром 32-40 мм — конусность 1:5. Длина конусной части не менее 1,25D эл. Обрабатывают посадочную часть с чистотой не ниже 7-го класса (R z 1,25).

Диаметр внутреннего канала охлаждения определяется расходом охлаждающей воды и достаточной прочностью электрода на сжатие и составляет:

d 0 = (0,4 - 0,6) D эл (мм).

Расстояние от рабочей поверхности электрода до дна внутреннего канала в значительной степени влияет на эксплуатационные характеристики электрода: стойкость, ресурс работы. Чем меньше это расстояние, тем лучше охлаждение электрода, но тем меньше переточек может выдержать электрод. По опытным данным:

h = (0,75 - 0,80) D эл (мм).

Тугоплавкие вставки из вольфрама W или молибдена Мо (рис. 4ж) запрессовываются в медные электроды или припаиваются серебросодержащими припоями; такие электроды применяют при сварке оцинкованных или анодированных сталей. Электроды со сменной рабочей частью (рис. 4и) и с шаровым шарниром (рис. 4к) применяют при сварке деталей из разных материалов или разнотолщинных деталей. Сменная рабочая часть изготавливается из вольфрама, молибдена или их сплавов с медью и крепится к электроду накидной гайкой. Применяются также стальные или латунные электроды с напрессованной медной оболочкой (рис. 4з) или медные электроды со стальной подпружиненной втулкой.

Материалы для электродов точечной сварки

Стойкость электродов — их способность сохранять размеры и форму рабочей поверхности (торца), противостоять взаимному переносу металла электродов и свариваемых деталей (загрязнение рабочей поверхности электрода). Она зависит от конструкции и материала электрода, диаметра его цилиндрической части, угла конуса, свойств и толщины свариваемого материала, режима сварки, условий охлаждения электрода. Износ электродов зависит от конструкции электродов (материал, диаметр цилиндрической части, угол конуса рабочей поверхности) и параметров режима сварки. Перегрев, оплавление, окисление при работе во влажной или коррозионной среде, деформации электродов при больших усилиях сжатия, перекос или смещение электродов усиливают их износ.

Материал электродов выбирают с учетом следующих требований:

  • электропроводность, сравнимая с электропроводностью чистой меди;
  • хорошая теплопроводность;
  • механическая прочность;
  • обрабатываемость давлением и резанием;
  • стойкость к разупрочнению при циклическом нагреве.

По сравнению с чистой медью сплавы на ее основе имеют в 3-5 раз большую стойкость к механическим нагрузкам, поэтому для электродов точечной сварки с их, казалось бы, взаимоисключающими требованиями применяют сплавы меди. Легирование кадмием Cd, хромом Сr, бериллием Be, алюминием Al, цинком Zn, цирконием Zr, магнием Мg не снижает электропроводность, но повышает прочность в нагретом состоянии, а железо Fe, никель Ni и кремний Si повышают твердость и механическую прочность. Примеры использования некоторых медных сплавов для электродов точечной сварки приведены в таблице 2.

Выбор электродов для точечной сварки

При выборе электродов основными параметрами являются форма и размеры рабочей поверхности электрода. При этом обязательно учитывают марку свариваемого материала, сочетания толщин свариваемых листов, форму сварного узла, требования к поверхности после сварки и расчетные параметры режима сварки.

Различают следующие виды формы рабочей поверхности электрода:

  • с плоскими (характеризуются диаметром рабочей поверхности d эл);
  • со сферическими (характеризуются радиусом R эл) поверхностями.

Электроды со сферической поверхностью менее чувствительны к перекосам, поэтому их рекомендуют к применению на машинах радиального типа и подвесных машинах (клещах) и для фигурных электродов, работающих с большим прогибом. Российские производители рекомендуют использовать для сварки легких сплавов только электроды со сферической поверхностью, что позволяет избежать вмятин и подрезов по краям сварной точки (см. рис. 7). Но избежать вмятин и подрезов можно, применяя плоские электроды с увеличенным торцом. Такие же электроды на шарнире позволяют избежать перекоса и поэтому могут заменить сферические электроды (рис. 8). Однако эти электроды рекомендуются в основном для сварки листов толщиной ≤1,2 мм.

Согласно ГОСТ 15878-79 размеры рабочей поверхности электрода выбираются в зависимости от толщины и марки свариваемых материалов (см. табл. 3). После исследования сечения сварной точки становится ясно, что есть прямые отношения между диаметром электрода и диаметром ядра сварной точки. Диаметр электрода определяет площадь поверхности контакта, которая соответствует фиктивному диаметру проводника сопротивления r между свариваемыми листами. Сопротивление контакта R будет обратно пропорционально этому диаметру и обратно пропорционально предварительному сжатию электродов для сглаживания микронеровностей поверхности. Исследования компании ARO (Франция) показали, что расчет диаметра рабочей поверхности электрода можно вести по эмпирической формуле:

d эл = 2t + 3 мм.

Где t — номинальная толщина свариваемых листов.

Наиболее сложно рассчитать диаметр электрода при неравной толщине свариваемых листов, сварке пакета из трех и более деталей и сварке разнородных материалов. Очевидно, что при сварке разнотолщинных деталей диаметр электрода должен выбираться относительно более тонкого листа. Используя формулу для расчета диаметра электрода, которая пропорциональна толщине свариваемого листа, формируем фиктивный проводник с сужающимся диаметром, который, в свою очередь, перемещает пятно нагрева к точке контакта этих двух листов (рис. 10).

При одновременной сварке пакета из деталей выбор диаметра рабочей поверхности электрода делается по толщине наружных деталей. При сварке разнородных материалов с разными теплофизическими характеристиками меньшее проплавление наблюдается у металла с меньшим удельным электрическим сопротивлением. В этом случае со стороны детали из металла с меньшим сопротивлением применяется электрод с большим диаметром рабочей поверхности d эл или изготовленный из материала с большей теплопроводностью (например, из хромистой бронзы БрХ).

Валерий Райский
Журнал «Оборудование: рынок, предложение, цены», № 05, май 2005 г.

Литература:

  1. Кнорозов Б.В., Усова Л.Ф., Третьяков А.В. Технология металлов и материаловедение. - М., Металлургия, 1987.
  2. Справочник машиностроителя. Т. 5, кн. 1. Под ред. Сатель Э.А. - М., Машгиз, 1963.

Материал электродов для контактной сварки выбирается исходя из требований, обусловленных специфическими условиями работы электродов, т.е. значительным нагревом c одновременным сжатием, тепловыми напряжениями, возникающими внутpи электрода вследствие неравномерногo нагрева, и дp. Стабильность качества зависит oт сохранения формы рaбочей поверхности электрода, контактирующей сo свариваемой деталью. Обычнo стойкость электродов oценивают по количеству точек, сваренных пpи интенсивном режиме, пpи котором диаметр торца электрода увeличивается до размеров, требующих заточки (около 20%).

Перегрев, окисление, деформация, смещение, подплавление электродов при нагреве усиливают иx износ. Чистая медь является тепло- и электропроводной, но не жаропрочной. Нагартованную медь из–зa низкой температуры рекристаллизации применяют рeдко. Чаще используются сплавы меди c добавлением легирующих элементов. Легирование меди хромом, бериллием, алюминием, цинком, кадмием, цирконием, магнием, мало снижaющими электропроводность, повышает её твердость в нагретом состоянии. Никель, железо, и кремний вводятся в медь для упрочнения электродов. Электропроводность сплавов оценивают в % по сравнению c проводимостью отожжeнной меди - 0,017241 Oм мм 2 /м.

Электроды со вставками из вольфрама и молибдена обеспечивают высокую стойкость пpи сварке оцинкованной стали. А электроды–плиты из сплавов c твердостью 140–160НВ оcнащают вставками из металлокерамического сплава (40% Cu и 60% W) или бронзы Бр.НБТ (смотрите таблицу).

Таблица. Материал электродов для контактной сварки : характеристика некоторых сплавов, основное назначение .


Материал для электродов контактной сварки, марка

Минимальная твердость НВ

Содержание легирующих элементов, % массы Тр, °С

Основное назначение

99 Сu 150– 300

Электроды и ролики для сваpки алюминиевых сплавов

1,0 Ag 250– 300

Бронза Бр.ХЦрА 0,3–0,09

0,03–0,08 Zr; 0,4–1,0 Cr; 340– 350

Электроды и ролики для сваpки алюминиевых и медных сплавов

Бронза Бр.К1 (МК)

0,9–1,2 Сd 250– 300

Бронза Бр.Х

0,4–1,0 Cr 350– 450

Электроды и ролики для сваpки углеродистых, низколегированных стaлей и

Бронза Бр.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; 480– 500

Бронза Бр.НТБ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Ве; 500– 550

Электроды, ролики для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Бронза Бр.КН1–4

3–4 Ni; 0,6–1 Si; 420– 450

Губки для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Кадмиевая бронза Бp.Кд1 (МК)

0,9–1,2 Cd -

Электроды, ролики для сварки лeгких и медных сплавов

Хромо–циркониевая бронза Бp.ХЦp 0,3–0,9

0,07–0,15 Zr; 0,15–0,35 Cr; -

Хромовая бронза Бр.X для , никеля, титана и их сплавов

0,3–0,6 Zn; 0,4–1,0 Cr; -

Электроды и ролики

Хромо–циркониевая бронза Бp.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; -

Никeлево–хромо–кобальтовая бронза Бp.НКХКо

≤ 0,5 Ni; ≤ 5,0 Со; ≤ 1,5 Cr; ≤ 2,0 Si -

Никелево–бериллиевая бронза Бp.НБТ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Be; -

Электроды, губки, ролики для сварки химически активных, тугоплавких металлов и сплавов

Хромовая бронза Бp.Х08

0,4–0,7 Сr -

Контактные губки

Кpемне–никелевая бронза Бp.КН1–4

3–4 Ni; 0,6–1,0 Si; -

Кремне–никелевая бронза Бp.НК1,5–0,5

1,2–2,3 Ni; 0,15–0,5 Ti; 0,3–0,8 Si; -

Используются повсеместно. Их применяют для сварки алюминия, нержавеющей стали, цветных металлов и многих других материалов. Связка вольфрамовый электрод + защитный газ - это хороший выбор для тех, кто хочет добиться качественных сварных соединений.

Но любой сварщик скажет вам, что для достойного результата мало знать одну лишь технологию сварки. Необходимо также помнить о маленьких хитростях, которые упростят и даже улучшат результат ваших работ. Одна из таких хитростей - заточка электрода. В этой статье мы кратко расскажем, зачем она нужна и как можно заточить вольфрамовый электрод самостоятельно.

Вольфрам - это один из самых тугоплавких металлов, применяемых для изготовления электродов. Температура плавления вольфрама - более 3000 градусов по Цельсию. В условиях обычной сварки такие температуры не используются. Поэтому вольфрамовые электроды называют неплавящимися. При применении они практически не меняются в размере.

Но, несмотря на это, вольфрамовые электроды все же могут стать короче. В процессе сварки (например, при поджигании дуги или при формировании шва) электрод может стачиваться о поверхность металла. В большинстве случаев это не так уж страшно. Но порой затупленный электрод становится причиной непровара.

Как решить эту проблему? Очень просто: заточить. Заточенный вольфрамовый электрод исправно выполняет свою функцию, образуя качественные долговечные швы.

Как заточить электрод

Заточка вольфрамового электрода может осуществляться самыми разнообразными способами. Это может быть абразивный круг, химическая заточка, заточка с помощью специальной пасты или механическая заточка. Последнюю выполняют с помощью специальных приспособлений. Они могут быть как переносными, так и стационарными.


К переносным относится ручная машинка для заточки вольфрамовых электродов, а к стационарным - станок для заточки вольфрамовых электродов. На наш взгляд, применение таких приспособлений дает оптимальный результат.

Форма заточки может быть сферической или конической. Сферическая форма больше подходит для сварки постоянным током, а коническая - для сварки переменным током. Некоторые сварщики отмечают, что не замечают большой разницы при сварке электродами с разной формой заточки. Но наш опыт показал, что отличия все-таки есть. И если вы выполняете сварку профессионально, то разница будет очевидна.

Оптимальную длину заточенной части можно рассчитать по формуле Ø*2 . Т.е., если диаметр электрода равен 3 мм, то длина заточенной части должна быть 6 мм. И так по аналогии с любым другим диаметром. После заточки немного притупите конец электрода, постучав им по твердой поверхности.

Еще один важный параметр - это угол заточки электрода. Он будет зависеть от того, какую величину сварочного тока вы будете использовать.

Так, при сварке на малом значении сварочного тока для заточки будет достаточно угла в 10-20 градусов. Оптимальный угол - 20 градусов.

Угол заточки в 20-40 градусов - это хороший вариант при сварке с применением средних значений сварочного тока.

Если вы используете токи большой величины, то угол заточки может быть от 40 до 120 градусов. Но мы не рекомендуем затачивать стержень более чем на 90 градусов. Иначе дуга будет гореть нестабильно и вам будет трудно сформировать шов.

Конструкция электродов должна иметь форму и размеры, обеспечивающие доступ рабочей части электрода к месту сварки деталей, быть приспособленной для удобной и надежной установки на машине и иметь высокую стойкость рабочей поверхности.

Наиболее простыми для изготовления и эксплуатации являются прямые электроды, выполняемые в соответствии с ГОСТом 14111-69 из различных медных электродных сплавов, в зависимости от марки металла свариваемых деталей.

Иногда, например при сварке разноименных металлов или деталей с большой разницей в толщине, для получения качественных соединений электроды должны иметь достаточно низкую электротеплопроводность (30…40% от меди). Если из такого металла изготавливать весь электрод, то он будет интенсивно нагреваться от сварочного тока за счет своего высокого электросопротивления. В таких случаях основание электрода выполняют из медного сплава, а рабочую часть из металла со свойствами, необходимыми для нормального формирования соединений. Рабочая часть 3 может быть сменной (рис. 1, а) и закрепляться с помощью гайки 2 на основании 1. Использование электродов такой конструкции удобно, так как позволяет при изменении толщины и марки металла свариваемых деталей устанавливать нужную рабочую часть. Недостатками электрода со сменной частью являются возможность применения его только при сварке деталей с хорошими подходами и недостаточно интенсивное охлаждение. Поэтому подобные электроды не следует использовать на тяжелых режимах сварки с большим темпом.

Рис. 1 . Электроды с рабочей частью из другого металла

Рабочую часть электродов выполняют также в виде припаянного (рис. 1, б) или запрессованного наконечника (рис. 1, в). Наконечники изготавливают из вольфрама, молибдена или их композиций с медью. При запрессовке наконечника из вольфрама необходима шлифовка его цилиндрической поверхности с целью надежного контакта с основанием электрода. При сварке деталей из нержавеющих сталей толщиной 0,8…1,5 мм диаметр вольфрамовой вставки 3 (рис. 1, в) составляет 4…7 мм, глубина запрессованной части 10…12 мм, а выступающей части 1,5…2 мм. При большей длине выступающей части наблюдаются перегрев и снижение стойкости электрода. Рабочая поверхность вставки может быть плоской или сферической.

Особое внимание при конструировании электродов должно уделяться форме и размерам посадочной части. Наиболее распространена конусная посадочная часть, длина которой должна составлять не менее . Электроды с укороченным конусом следует применять только при сварке с использованием малых усилий и токов. Кроме конусной посадки иногда применяется крепление электродов на резьбе с помощью накидной гайки. Такое соединение электродов может быть рекомендовано в. многоточечных машинах, когда важно иметь одинаковое исходное расстояние между электродами, или в клещах. При использовании фигурных электрододержателей применяются также электроды с цилиндрической посадочной частью (см. рис. 8, г).

При точечной сварке деталей сложного контура и плохими подходами к месту соединения используют самые разнообразные фигурные электроды, которые имеют более сложную конструкцию чем прямые, менее удобны в эксплуатации и, как правило, обладают пониженной стойкостью. Поэтому фигурные электроды целесообразно применять тогда, когда без них сварка вообще неосуществима. Размеры и форма фигурных электродов зависят от размеров и конфигурации деталей, а также конструкции электрододержателей и консолей сварочной машины (рис. 2).


Рис. 2. Различные типы фигурных электродов

Фигурные электроды при работе обычно испытывают значительный изгибающий момент от внеосевого приложения усилия, который необходимо учитывать при выборе или конструировании электродов. Изгибающий момент и обычно малое сечение консольной части создают значительные упругие деформации. В связи с этим неизбежно взаимное смещение рабочих поверхностей электродов, особенно, если один электрод прямой, а другой фигурный. Поэтому у фигурных электродов предпочтительной является сферическая форма рабочей поверхности. В случае фигурных электродов, испытывающих большие изгибающие моменты, возможна деформация конусной посадочной части и гнезда электрододержателя. Предельно допустимые изгибающие моменты для фигурных электродов из бронзы Бр.НБТ и электрододержателей из термообработанной бронзы Бр.Х составляют по опытным данным для конусов электродов диаметром 16, 20, 25 мм соответственно 750, 1500 и 3200 кг × см. Если конусная часть фигурного электрода испытывает момент больше допустимого, то следует увеличить максимальный диаметр конуса.

При конструировании сложных пространственных фигурных электродов рекомендуется предварительное изготовление их модели из пластилина, дерева или легко обрабатываемого металла. Это позволяет установить наиболее рациональные размеры и форму фигурного электрода и избежать переделок при его изготовлении сразу из металла.

На рис. 3 приведены некоторые примеры сварки узлов в местах с ограниченным доступом. Сварку профиля с обечайкой выполняют нижним электродом со смещенной рабочей поверхностью (рис. 3, а).


Рис. 3. Примеры применения фигурных электродов

Пример использования верхнего электрода с косой заточкой и нижнего, фигурного, показан на рис. 3, б. Угол отклонения электрододержателя от вертикальной оси не должен быть более 30°, в противном случае конусное отверстие электрододержателя деформируется. Если нельзя установить верхний электрод с наклоном, то он также может быть фигурным. Фигурный электрод изгибают в двух, плоскостях для достижения труднодоступного места сварки (рис. 3, в-д). Если на машине отсутствует или ограничено горизонтальное перемещение консолей для сварки деталей, показанных на рис. 3, е применяют два фигурных электрода с одинаковыми вылетами.

Иногда фигурные электроды воспринимают очень большие изгибающие моменты. Во избежание деформации конусной посадочной части фигурный электрод дополнительно закрепляют за наружную поверхность электрододержателя с помощью хомутика и винта (рис. 4, а). Прочность фигурных электродов с большим вылетом значительно увеличивается, если выполнять их составными (армированными). Для этого основная часть электрода делается из стали, а токоведущая из медного сплава (рис. 4, б). Соединение токоведущих частей между собой может быть выполнено с помощью пайки, а со стальной консолью - на винтах. Возможен вариант конструкции, когда фигурный электрод из медного сплава подкрепляют (армируют) стальными элементами (планками), которые не должны образовывать вокруг электрода замкнутого кольца, так как в нем будут индуктироваться токи, увеличивающие нагрев электрода. Крепление фигурных электродов, испытывающих большие моменты, целесообразно выполнять в виде удлиненной цилиндрической части, для установки в машине вместо электрододержателя (см. рис. 4, б).

Рис. 4. Электроды, воспринимающие большой изгибающий момент:

а - с подкреплением за наружную поверхность электрододержателя;

б - армированный электрод: 1 - стальная консоль; 2 - электрод; 3 - токоподвод

В большинстве случаев при точечной сварке используется внутреннее охлаждение электродов. Однако, если сварка выполняется электродами малого сечения или с большим нагревом, а свариваемый материал не подвержен коррозии, в клещах применяют наружное охлаждение. Подвод охлаждающей воды осуществляется либо специальными трубками, либо через отверстия в рабочей части самого электрода. Большие трудности возникают при охлаждении фигурных электродов, так как подвести воду непосредственно к рабочей части не всегда возможно из-за малого сечения консольной части электрода. Иногда охлаждение выполняют с помощью тонких медных трубок, припаиваемых к боковым поверхностям консольной части фигурного электрода достаточно большого размера. Учитывая, что фигурные электроды всегда охлаждаются хуже прямых электродов, часто приходится существенно снижать темп сварки, не допуская перегрева рабочей части фигурного электрода и снижения стойкости.

При использовании для сварки в труднодоступных местах клещей, а также необходимости частой замены электродов применяют крепление электродов, показанное на рис. 5. Такое крепление обеспечивает хороший электрический контакт, удобное регулирование вылета электродов, хорошую устойчивость против боковых смещений, быстрый и простой съем электродов. Однако из-за отсутствия внутреннего охлаждения в таких электродах их применяют при сварке на малых токах (до 5…6 кА) и с малым темпом.

Рис. 5. Способы крепления электродов

Для удобства работы используют электроды, имеющие несколько рабочих частей. Эти электроды могут быть переставными или поворотными (рис. 6) и значительно упрощают и ускоряют установку электродов (совмещение рабочих поверхностей).


Рис. 6. Многопозиционные переставной (а) и поверхностный (б) электроды:

1 - электрододержатель; 2 - электрод

Электроды устанавливаются в электрододержателях, которые закрепляются на консольных частях сварочной машины, передающих усилие сжатия и ток. В табл. для справок приведены размеры прямых электрододержателей основных типов точечных сварочных машин. Электрододержатели должны изготавливаться из достаточно прочных медных сплавов с относительно высокой электропроводностью. Чаще всего электрододержатели выполняют из бронзы Бр.Х, которая должна быть термически обработана для получения необходимой твердости (НВ не менее 110). В случае сварки сталей, когда применяются небольшие токи (5…10 кА), электрододержатели целесообразно выполнять из бронзы Бр.НБТ или кремненикелевой бронзы. Эти металлы обеспечивают длительное сохранение размеров конусного посадочного отверстия электрододержателя.

Таблица. Размеры электрододержателей точечных машин в мм

Размеры электрододержателя

МТПТ-600

МТПТ-400, МТК-75

МТП-300,

МТП-400

МТК 6301, МТП-200/1200

МТПУ-300, МТП-150/1200 МТП-200, МТП-150, МТ 2507

МТ 1607, МТП-75 МТП-100, МТПР-75 (50 , 25) МТПК-25, МТ 1206

Наружный диаметр

Диаметр конуса для электрода

Конусность

1: 10

1:10

1:10

Наибольшее распространение имеют прямые электрододержатели (рис. 7). Внутри полости электрододержателя проходит трубка для подвода воды, сечение которой должно быть достаточно для интенсивного охлаждения электрода. При толщине стенки трубки 0,5…0,8 мм ее наружный диаметр должен составлять 0,7…0,75 от диаметра отверстия электрода . В случае частой смены электродов целесообразно использовать электрододержатели с выталкивателями (рис. 7, б). Выталкивание электрода из посадочного гнезда производится при ударе деревянным молотком по бойку 5, который соединен с трубкой из нержавеющей стали - выталкивателем 1. Возврат выталкивателя и бойка в исходное нижнее положение выполняется пружиной 2. Важно, чтобы торец выталкивателя, ударяющий по торцу электрода, не имел повреждений на своей поверхности, в противном случае посадочная часть электрода будет быстро выходить из строя, заклиниваясь при его удалении из электрододержателя. Удобным для эксплуатации является выполнение конца электрододержателя 1 в виде сменной резьбовой втулки 2, в которой установлен электрод 3 (рис. 7, в). Такая конструкция позволяет изготавливать втулку 2 из более стойкого металла и заменять ее при износе и установке электрода другого диаметра, а также легко удалять электрод при заклинивании путем выбивания его стальной выколоткой изнутри втулки.


Рис. 7. Прямые электрододержатели:

а – нормальный;

б – с выталкивателем;

в – со сменной втулкой

Если фигурные электроды чаще применяются при сварке деталей, имеющих малые размеры соединяемых элементов, то при больших их размерах целесообразно использование специальных фигурных электрододержателей и простых электродов, Фигурные электрододержатели могут быть составными и обеспечивать установку электродов под различным, углом к вертикальной оси (рис. 8, а). Достоинством такого электрододержателя является легкая регулировка вылета электрода. В ряде случаев фигурный электрод может быть заменен электрододержателей, показанным на рис. 8, б. Интерес также представляет электрододержатель, наклон которого можно легко регулировать (рис. 8, в). Конструкция, изогнутого под углом 90° электрододержателя приведена на рис. 30, г, она позволяет закрепить электроды с цилиндрической посадочной частью. Специальный винтовой зажим обеспечивает быстрое закрепление и снятие электродов. На рис. 9 представлены различные примеры точечной сварки с использованием фигурных электрододержателей.

Рис. 8. Специальные электрододержатели

Рис. 9. Примеры применения различных электрододержателей

При точечной сварке крупногабаритных узлов типа панелей целесообразно использовать четырехэлектродную поворотную головку (рис. 10). Применение таких головок позволяет в четыре раза увеличить время работы электродов до очередной зачистки, не удаляя свариваемую панель из рабочего пространства машины. Для этого после загрязнения каждой пары электродов электрододержатель 1 поворачивается на 90° и закрепляется стопором 4. Поворотная головка позволяет также устанавливать электроды с различной формой рабочей поверхности для сварки узла с изменяющейся, например, ступенчато толщиной деталей, а также обеспечить механизацию зачистки электродов специальными устройствами. Поворотная головка может использоваться при точечной сварке деталей с большой разницей в толщине и устанавливается со стороны тонкой детали. Известно, что при этом рабочая поверхность электрода, контактирующего с тонкой деталью, быстро изнашивается и заменяется приповороте головки на новую. В качестве электрода со стороны толстой детали удобно использовать ролик.

Рис. 10. Поворотная электродная головка:

1 – поворотный электрододержатель; 2 – корпус; 3 – электрод; 4 – стопор

При точечной сварке оси электродов должны быть перпендикулярны поверхностям свариваемых деталей. Для этого сварку деталей, имеющих уклоны (плавно изменяющуюся толщину), или изготовляемых с помощью подвесных машин, при наличии крупногабаритных узлов выполняют с использованием самоустанавливающегося поворотного электрода со сферической опорой (рис. 11, а). Во избежание течи воды электрод имеет уплотнение в виде резинового кольца.

Рис. 11. Самоустанавливающиеся электроды и головки:

а - поворотный электрод с плоской рабочей поверхностью;

б - головка для двухточечной сварки: 1 - корпус; 2 - ось;

в - пластинчатый электрод для сварки сетки: 1, 7 - консоли машины; 2-вилка; 3 - гибкие шины; 4-качающийся электрод; 5 - свариваемая сетка; 6 - нижний электрод

На обычных точечных машинах сварка стальных деталей относительно небольшой толщины может выполняться сразу двумя точками с применением двухэлектродной головки (рис. 11, б). Равномерное распределение усилий на оба электрода достигается за счет поворота корпуса 1 относительно оси 2 под действием усилия сжатия машины.

Для сварки сетки из стальной проволоки диаметром 3…5 мм могут быть применены пластинчатые электроды (рис. 11, в). Верхний электрод 4 качается на оси для равномерного распределения усилий между соединениями. Подвод тока в целях его равномерности производится гибкими шинами 3; вилка 2 и ось качания изолированы от электрода. При длине электродов до 150 мм они могут выполняться некачающимися.

Рис. 12. Раздвижные клиновые электроды-вставки

При сварке панелей, состоящих из двух обшивок и ребер жесткости, внутри должна находиться электропроводная вставка, воспринимающая усилие электродов машины. Конструкция вставки должна обеспечивать ее плотное прилегание к внутренней поверхности свариваемых деталей без зазора, во избежание глубоких вмятин на внешних поверхностях деталей и возможных прожогов. Для этой цели может быть использована раздвижная вставка, показанная на рис. 12. Движение клина 2 относительно неподвижного клина 4, обеспечивающее их поджатие к свариваемым деталям 3, синхронизировано с работой машины. Когда электроды 1 и 5 сжаты и происходит сварка, воздух из пневмосистемы привода машины поступает в правую полость цилиндра 8, закрепленного на передней стенке машины и через тягу 7 перемещает клин 2, увеличивая расстояние между рабочими поверхностями клиньев. При поднятии электрода 1 воздух выходит из правой и начинает поступать в левую полость цилиндра 8, уменьшая расстояние между поверхностями клиньев, что позволяет перемещать свариваемую панель относительно электродов машины. Охлаждение клиновой вставки производится воздухом, который поступает по трубке 6. Использование такой вставки позволяет сваривать детали с внутренним расстоянием между ними до 10 мм.