Импульсные регулируемые блоки питания своими руками. Как сделать импульсный блок питания? Импульсный источник питания

Маломощный импульсный блок питания можно использовать в самых разных радиолюбительских конструкциях. Схема такого ИБП отличается особой простотой, поэтому может быть повторена даже начинающими радиолюбителями.

Основные параметры БП:
Входное напряжение - 110-260В 50Гц
Мощность - 15 Ватт
Выходное напряжение - 12В
Выходной ток - не более 0,7А
Рабочая частота 15-20кГц

Исходные компоненты схемы можно достать из подручного хлама. В мультивибраторе использовались транзисторы серии MJE13003, но при желании можно заменить на 13007/13009 или аналогичные. Такие транзисторы легко найти в импульсных блоках питания (в моем случае были сняты из компьютерного БП).

Конденсатор по питанию подбирается с напряжением 400 Вольт (в крайнем случае, на 250, чего очень не советую)
Стабилитрон использован отечественный типа Д816Г или импортный с мощностью порядка 1 ватт.

Диодный мост - КЦ402Б, можно использовать любые диоды с током 1 Ампер. Диоды нужно подобрать с обратным напряжением не менее 400 вольт. Из импортного интерьера можно ставить 1N4007 (полный отечественный аналог КД258Д) и другие.

Импульсный трансформатор - ферритовое кольцо 2000НМ, размеры в моем случае К20х10х8, но были использованы и также большие кольца, при этом намоточные данные не менял, работало нормально. Первичная обмотка (сетевая) состоит из 220 витков с отводом от середины, провод 0,25-0,45мм (больше нет смысла).

Вторичная обмотка в моем случае содержит 35 витков, что обеспечивает на выходе порядка 12 Вольт. Провод для вторичной обмотки подбирается с диаметром 0,5-1мм. Максимальная мощность преобразователя в моем случае не более 10-15 ватт, но мощность можно изменить подбором емкости конденсатора С3 (при этом, намоточные данные импульсного трансформатора уже меняются). Выходной ток такого преобразователя порядка 0,7А.
Сглаживающую емкость (С1) подобрать с напряжением 63-100Вольт.

На выходе трансформатора стоит использовать только импульсные диоды, поскольку частота достаточно повышена, обычные выпрямительные могут и не справится. FR107/207 пожалуй, самые доступные из импульсных диодов, часто встречаются в сетевых ИБП.

БП не имеет никаких защит от короткого замыкания, поэтому не следует замыкать вторичную обмотку трансформатора.

Перегрев транзисторов не замечал, с выходной нагрузкой 3 Ватт (светодиодная сборка) они ледяные, но на всякий случай можно установить на небольшие теплоотводы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

MJE13003

2 13007/13009 В блокнот
VDS1 Диодный мост

КЦ402А

1 Либо другой маломощный В блокнот
VDS2 Диодный мост 1 Любой до 2А В блокнот
VD1 Стабилитрон

Д816Г

1 В блокнот
С1 220 мкФ 440В 1 В блокнот
С2 Электролитический конденсатор 1000 мкФ х 16В 1 В блокнот
С3 Конденсатор 2.2 мкФ х 630В 1 Пленочный

Для понижения и выпрямления напряжения сети до 12 В традиционным способом идет передача энергии последовательно. Понадобятся блоки, изображенные на структурной схеме.

Силовой трансформатор на входе снижает напряжение с 220 вольт до 15, с запасом, чтобы потом в дальнейших схемах оно, неизбежно при выпрямлении и сглаживании теряя величину, опустилось как раз до нужных 12 вольт. Выпрямитель делается в виде моста из низковольтных диодов, в результате работы которого получается знакопостоянное пульсирующее напряжение. Делается так, что два полупериода попеременно идут то через одну пару диодов, то через другую, и на выходе напряжение начинает «дергаться» только в одну строну. Схема сглаживания содержит накапливающий заряды инерционный элемент - конденсатор большой емкости. Он заряжается от импульса и медленно поддерживает напряжение своим неторопливым разрядом до поступления следующего импульса. Это называется сглаживание, но еще делается и дополнительная стабилизация выходного напряжения, чтобы на него меньше влияла величина нагрузки.

Плюс такой схемы в том, что трансформатор на входе сразу «отвязывает» все дальнейшие схемы от высокого входного напряжения. Только за это приходится платить физически большим силовым трансформатором. В нашем случае трансформатор, питающий более-менее подходящую мощность прибора, например, в 300 ватт (старый телевизор), должен весить около 4 кг. Ну, понятно, поставил его, такой блок питания, на пол, и стоит, каши не просит. Но как быть для небольших устройств? Неужели катить его с собой на тележке? Кроме того, большая масса железа, работающая на маленькую нагрузку, порождает низкий КПД - около 50%.

Ну и цена, пропорциональная массе прибора, заставляет придумывать нечто более миниатюрное во всех отношениях.

Импульсные источники питания

В импульсных блоках питания, прежде всего, избавились от громоздкого понижающего трансформатора. Напряжение сразу выпрямляется, и уже им запитывается генератор импульсов, напряжение которого и можно потом понизить до любого желаемого уровня. Причем, габариты понижающих трансформаторов при этом напрямую зависят от частоты, выдаваемой генератором, - чем выше частота, тем меньше трансформатор. И уж потом такое питание, снова его выпрямив, используют в устройстве.

Видно, что традиционный блок питания переместился на нижний этаж; кроме того, имеется обратная связь, дополнительно настраивающая инвертор (генератор импульсов)

Силовой трансформатор здесь импульсный, работает после генератора импульсов. Он высокочастотный, так как частота генератора порядка 20–100 кГц. В качестве материала сердечника используется не обычное трансформаторное железо, а ферримагнетки, материалы на основе структурированных окислов железа, которые лучше выполняют свою функцию на высоких частотах.

Обмотки такого трансформатора имеют полярность, это играет роль при подключении начала и конца обмоток.

Такие блоки питания вполне реально изготовить совершенно маленькими, что можно увидеть на блоках питания энергосберегающих ламп - они умещаются в цоколь лампы.

Кстати, и использовать блок питания (балласт) такой лампы можно по другому назначению. Вернее, по своему назначению, но в другом устройстве, когда лампа - сверхнадежная и экономичная - все-таки перегорит.

Выходной выпрямитель после трансформатора делается на основе диодов Шоттки, имеющих меньшую, чем у обычных диодов, внутреннюю емкость, следовательно, лучше работающих на высокой частоте.

Схема обратной связи калибрует импульсы генератора сигналом рассогласования, который заставляет вырабатывать импульсы тем большей длительности, чем больше отличается выходное напряжение от нужного номинала. Этим на выход передается большая мощность, и напряжение выравнивается.

Обратноходовый блок управления инвертором создает гальваническую привязку выходной цепи к цепи входного напряжения. Чтобы от этого избавиться, используют оптроны - приборы оптической передачи, преобразователи электросигнал–свет–электросигнал.

Пример простого импульсного блок питания

Сейчас современные электронные потребительские устройства все выпускаются с импульсными блоками питания. Поэтому и самому сделать его из частей от других импульсных источников питания (ИИП) легко, а уж взять готовый блок или зарядное и слегка переделать под свое напряжение - и того проще.

Импульсный БП, то есть инверторный блок питания, характеризуется только выходным напряжением и номинальной мощностью. Входы у них у всех обычные - 220 В. Для устройств связи, модемов, например, часто встречается импульсный блок питания на 24 В. Ноутбуки чаще всего берут 19 В. Все ИБП, имеющие выход типа USB, вырабатывают 5 В. Для всего остального прочего, например, светодиодных линеек, чаще всего требуется знакомое и любимое нами по автомобильным аккумуляторам напряжение в 12 В.

Импульсный источник питания можно взять готовый, перенастроив его под требуемое напряжение выхода,

А можно собрать и самому на плате, воспользовавшись простейшей схемой.

Элементы легко приобретаются в магазинах компонентов схемотехники.

Кроме сборки элементов на плате, пользуясь данным описанием, можно сделать и импульсный трансформатор своими руками.

Недостатки импульсных БП и пути их устранения

Так как прямоугольные импульсы «не фэн-шуйны» - имеют резкие взлеты и спады напряжения (передние и задние фронты импульсов), это порождает высокочастотные помехи, способные пройти сквозь схемы с малым емкостным сопротивлением. На силовую часть различных устройств они обычно не влияют, но в умных схемах могут оказаться ощутимой нежелательной помехой.

Часто для питания компьютеров используют сетевые фильтры, пилоты, которые содержат такую функцию - подавление высокочастотных помех. Но импульсные БП сами могут являться источником таких шумовых сигналов, поэтому в нем необходимо применять дополнительную фильтрацию таких помех на выходе.

Импульсные блоки питания критичны к номиналам нагрузки, питаемая ими мощность не должна отличаться слишком сильно ни в сторону превышения, ни в сторону занижения. Регулировка обратной связью делается для того, чтобы в цифровых устройствах, которые такой БП снабжает напряжением, во время работы обычные для них колебания мощности, происходящие от включения/выключения каких-то блоков, регистров, и т. д. не ухудшали нормальную работу. Эти колебания происходят вокруг некоторого среднего значения мощности и не должны систематически отклоняться туда или сюда.

В реальных БП делается специальная защита от работы в недонагруженном или перенагруженном состоянии.

Устанавливаются во многих электроприборах. Основным их элементом принято считать катушку индуктивности. По своим параметрам она может довольно сильно отличаться, и в первую очередь это связано с пороговым напряжением в сети.

Дополнительно следует учитывать мощность самого прибора. Сделать простой блок питания в домашних условиях довольно просто. Однако в данном случае необходимо уметь рассчитывать показатель частотной модуляции. Для этого учитывается вектор прерывания в сети и параметр интеграции.

Как сделать блок для компьютера?

Для того чтобы собирать импульсные блоки питания своими руками для компьютеров, потребуются катушки индуктивности средней мощности. Частотный сдвиг в данном случае будет полностью зависеть от типа используемых конденсаторов. Дополнительно перед началом работы следует рассчитать показатель модуляции. При этом важно учесть пороговое напряжение в системе.

Если параметр модуляции находится в районе 80 %, то конденсаторы можно использовать с емкостью менее 4 пФ. Однако следует позаботиться о наличии мощных транзисторов. Основной проблемой данных блоков принято считать перегрев обмотки катушки. При этом человек может наблюдать небольшую задымленность. Ремонт импульсного блока питания в данном случае следует начинать с отключения в первую очередь всех конденсаторов. После этого контакты необходимо тщательно зачистить. Если в конечном счете проблема будет не устранена, катушку индуктивности придется полностью заменить.

Модель на 3 В

Сделать импульсные блоки питания своими руками на 3 В можно используя обычные катушки индуктивности серии РР202. Показатели проводимости у них находятся на среднем уровне. В данной ситуации параметр модуляции в системе не должен превышать 70 %. В противном случае пользователь может столкнуть с частотным сдвигом, который будет происходить в блоке.

Дополнительно важно подбирать конденсаторы с емкостью не менее 5 пФ. Принцип работы импульсного блока питания данного типа основывается на смене фазы. При этом нередко специалистами дополнительно устанавливаются преобразователи. Все это необходимо для того, чтобы промежуточная частота была как можно меньше. Кулеры на блоки данного типа монтируются крайне редко.

Устройство на 5 В

Чтобы сделать импульсные блоки питания своими руками, необходимо обязательно подобрать выпрямитель, исходя из мощности электроприбора. Конденсаторы в данном случае используются с емкостью до 6 пФ. При этом дополнительно в приборе устанавливаются попарно транзисторы. Это необходимо для того, чтобы показатель модуляции как минимум вывести на уровень 80 %.

Все это позволит повысить также параметр индуктивности. Проблемы данных блоков чаще всего связаны именно с перегревом конденсаторов. При этом на катушку особого напряжения не оказывается. Ремонт импульсного блока питания в данном случае следует начинать стандартно - с зачистки контактов. Только после этого устанавливается более мощный преобразователь.

Что понадобится для блока на 12 В?

Стандартная схема импульсного блока питания данного типа включает в себя катушку индуктивности, конденсаторы, а также выпрямитель вместе с фильтрами. Параметр модуляции в этом случае значительно зависит от показателя предельной частоты. Дополнительно важно учитывать скорость интегрального процессора. Транзисторы для блока данного типа в основном подбираются полевого вида.

Конденсаторы необходимы только с емкостью на уровне 5 пФ. Все это в конечном счете позволит значительно понизить риск термального повышения в системе. Катушки индуктивности устанавливаются, как правило, средней мощности. При этом обмотки для них обязательно должны использоваться медные. Регулируется импульсный блок питания 12В за счет специальных контролеров. Однако многое в данной ситуации зависит от типа электроприбора.

Блоки с фильтрами ММ1

Схема импульсного блока питания с фильтрами данной серии включает в себя, помимо катушки индуктивности, выпрямитель, конденсатор и резистор вместе с преобразователем. Использование фильтров в устройстве позволяет значительно сократить риск термального повышения. При этом чувствительность модели повышается. Коэффициент модуляции в этом случае напрямую зависит от прерывания сигнала.

Для повышения порогового напряжения специалисты резисторы рекомендуют применять только полевого типа. При этом емкость конденсатора минимум должна быть на уровне 4 Ом. Основной проблемой таких устройств принято считать повышение отрицательного сопротивления. В результате все резисторы на плате довольно быстро выгорают. Ремонт блока в такой ситуации необходимо начинать с замены внешней обмотки катушки индуктивности. Дополнительно следует проверить полярность резисторов. В некоторых случаях повышение отрицательного сопротивления в цепи связано с увеличением диапазона частоты. В данном случае целесообразнее поставить более мощный преобразователь.

Как собрать блок с выпрямителем?

Чтобы сделать импульсные блоки питания своими руками с выпрямителем, транзисторы понадобятся закрытого типа. При этом конденсаторов в системе должно быть предусмотрено как минимум четыре единицы. Минимальная их емкость обязана находиться на уровне 5 пФ. Принцип работы импульсного блока питания данного типа основывается на изменении фазы тока. Происходит данный процесс непосредственно за счет преобразователя. Фильтры у таких моделей устанавливаются довольно редко. Связано это в большей степени с тем, что пороговое напряжение вследствие их использования значительно повышается.

Модели со сглаживающими фильтрами

Схема импульсного блока питания 12В со сглаживающими фильтрами конденсаторы предусматривает с емкостью как минимум в 4 пФ. За счет этого показатель модуляции должен находится на уровне 70 %. Для того чтобы стабилизировать процесс преобразования, многие используют резисторы только закрытого типа. Пропускная способность у них довольно малая, однако проблему они решают. Принцип импульсного блока питания основывается на изменении фазы устройства. Фильтры у него чаще всего устанавливаются сразу возле катушки.

Блоки повышенной стабилизации

Сделать блок данного типа можно используя катушку индуктивности только большой мощности. При этом конденсаторов в системе должно быть как минимум пять единиц. Также следует заранее подсчитать количество необходимых резисторов. Если преобразователь используется в блоке низкочастотный, то резисторов необходимо использовать только два. В противном случае они устанавливаются также и на выходе. Фильтры для данных систем применяются самые разнообразные.

В этой ситуации многое зависит от показателя модуляции. Основной проблемой таких систем принято считать перегрев резисторов. Происходит это из-за резкого повышения порогового напряжения. При этом преобразователь также выходит из строя. Ремонт блока в такой ситуации необходимо начинать также с зачистки контактов. Только после этого можно проверить уровень отрицательного сопротивления. Если данный параметр превышает 5 Ом, то необходимо полностью заменить все конденсаторы в устройстве.

Модели с конденсаторами РС

Сделать блоки с конденсаторами данной серии можно довольно просто. Резисторы для них используются только закрытого типа. При этом полевые аналоги значительно снизят параметр модуляции до 50 %. Катушки индуктивности с конденсаторами применяются средней мощности. Прерывание сигнала в данном случае напрямую зависит от скорости возрастания предельного напряжения. Преобразователи в устройствах используются довольно редко. В данном случае интегрирование происходит за счет изменения положения резистора.

Устройства с конденсаторами СХ

Сделать блоки данного типа можно только на резисторах закрытого типа. Катушки индуктивности на них можно устанавливать различной мощности. В данном случае параметр модуляции зависит исключительно от порогового напряжения. Если рассматривать модели для телевизоров, то блок лучше всего делать сразу с системой фильтрации. В данном случае низкочастотные помехи будут отсеиваться сразу на входе. Конденсаторов в устройстве должно быть предусмотрено как минимум пять. Емкость их в среднем обязана составлять 5 пФ.

Если устанавливать их непосредственно возле катушки индуктивности, то лучше всего использовать дополнительно многослойный конденсатор. Контролеры в данном случае устанавливаются только поворотного типа. При этом регулировка импульсного блока питания будет происходить довольно плавно.

Как сделать блок с синазным дросселем?

Схема импульсного блока питания 12В с синазным дросселем включает в себя катушку, конденсатор, а также преобразователь. Последний элемент подбирается исходя из уровня отрицательного сопротивления в цепи. Также важно заранее рассчитать параметр предельной частоты. В среднем он должен быть не ниже 45 Гц. За счет этого стабильность системы значительно повысится. Работа импульсного блока питания данного типа основывается на изменении фазы за счет повышения модуляции.

Блоки с применением керамических конденсаторов

Сделать мощный импульсный блок питания с керамическими конденсаторами довольно сложно из-за высокого сопротивления цепи. В результате встретить такие модификации на сегодняшний день проблематично. Как правило, они изредка применяются на различном аудиоборудовании. Резисторы в данном случае подходят только полевого типа. Также следует заранее подбирать качественный преобразователь. Обмотка на нем должна быть только медная.

При этом витки обязаны быть направлены как сверху вниз, так и снизу вверх. Прерывание сигнала в данном случае напрямую зависит от скорости процесса преобразования. Если температура в системе повышается довольно быстро, в первую очередь страдают именно конденсаторы. При этом дымок над платой появляется довольно часто. В таком случае ремонт блока следует начинать с замены конденсаторов. После этого проверяется пороговое напряжение на внешней обмотке катушки индуктивности. Завершать работы следует с зачистки контактов.

Модели с каплевидными конденсаторами

Принцип работы блоков с каплевидными конденсаторами стандартно заключается в изменении фазы. При этом преобразователь в процессе играет ключевую роль. Для стабильной работы системы параметр отрицательного сопротивления должен находиться на уровне не ниже 5 Ом. В противном случае конденсаторы перегружаются. Катушку индуктивности в данном случае можно использовать любую. При этом параметр модуляции обязан находиться в районе 70 %. Резисторы для таких блоков используются только векторные. Проходимость тока у них довольно высокая. При этом стоят они на рынке дешево.

Применение варисторов

Варисторы в маломощных блоках используются крайне редко. При этом они способны значительно повысить стабильность работы прибора. Устанавливаются данные элементы, как правило, возле катушки индуктивности. Скорость процесса интегрирования в данном случае зависит напрямую от типов конденсаторов. Если использовать их с предельной емкостью на уровне 5 пФ, то коэффициент модуляции будет находиться на уровне 60 %.

Прерывание сигнала в данном случае может происходить из-за сбоев преобразователя. Ремонт блока необходимо начинать с обследования состояния контактов. Только после этого проверяется целостность обмотки катушки индуктивности. Контролеры для таких блоков подходят самые разнообразные. Кнопочные варианты следует рассматривать в последнюю очередь. Регулирование блока при этом будет зависеть во многом от проводимости контактов.

В радиолюбительской практике многие самодельные конструкции остаются на полках без внимания по той причине, что не имеют блока питания. Одна из самых повторяемых конструкций - усилитель мощности низкой частоты, которому тоже нужен источник питания. Сетевые трансформаторы для запитки мощных усилителей стоят немало денег, да и размеры и вес иногда некстати. По этому в последнее время широкое применение нашли импульсные блоки питания. Эти блоки имеют полностью электронную начинку и работают в импульсном режиме. За счет повышенной рабочей частоте удается резким образом уменьшить размеры и вес источника питания. Схема такого блока питания была найдена в одном из зарубежных сайтов, недолго думая, решил повторить конструкцию.


Конструкция отличается особой простотой и дешевизной, в моем случае было потрачено всего 5$ на транзисторы и микросхему, все остальное можно найти в нерабочем компьютерном блоке питания.
Мощность такого блока может доходить до 400 ватт, для этого нужно только поменять диодный выпрямитель и электролиты, вместо 220 мкФ, поставить на 470.

Выпрямитель можно взять готовый, от компьютерного БП или собрать мост из диодов с током 3 А и более, обратное напряжение диодов не менее 400Вольт.


Первый запуск схемы нужно проводить с последовательно подключенной лампой накаливания на 220 Вольт 100 - 150 ватт, чтобы при неправильном монтаже схема не взорвалась.

Имеют меньшие размеры и больший КПД однако они гораздо сложнее в изготовлении и часто перегорают из за неправильного расчёта трансформатора или разводки платы (или чего либо ещё неправильного). Маломощный импульсный источник питания можно сделать своими руками если использовать одну из микросхем:
TNY263 на 7.5 Вт,
TNY264 на 9 Вт,
TNY265 на 11 Вт,
TNY266 на 15 Вт,
TNY267 на 19 Вт,
TNY268 на 23 Вт (мощности для источников в открытом исполнении);
использовать программу, свободно распространяемую программу, PI Expert которую можно скачать (для скачивания нужна регистрация) с официального сайта www.powerint.com фирмы Power Integrations и развести плату согласно рекомендациям в документации или программе PI Expert. Установочник данной программы занимает около 78МБ памяти. На момент написания данной статьи для скачивания надо перейти на Design Support-PI Expert TM Design Software-PI Expert Download - заполнить поля и нажать кнопку "Submit"(перед всем этим конечно надо зарегистрироваться и войти в свой аккаунт). Схему источника питания генерирует программа но можно использовать такую:

Рисунок 1 - Импульсный блок питания на 9В, 1А


Данный источник питания является импульсным понижающим обратноходовым преобразователем. В микросхему TNY266 встроен полевой транзистор который открывается с частотой 132кГц, когда этот транзистор открыт ток через первичную обмотку нарастает и в трансформаторе накапливается энергия, когда этот транзистор закрывается во вторичной обмотке возникает ЭДС, диод VD3 открывается и ток идёт в нагрузку. Диод VD3 должен быть мощным диодом Шоттки или обычным, с p-n переходом, но быстрым. Элементы C3, R2, VD2 нужны для того чтобы в случае отсутствия достаточной нагрузки защитить микросхему от высокого напряжения т.к. трансформатор всё равно выведет энергию наружу. Несмотря на наличие защиты данный блок питания без нагрузки лучше не включать или можно на выход поставить резистор с большим сопротивлением на всякий случай. Короткое замыкание или слишком большую нагрузку на выходе тоже лучше не делать т.к. от большого тока диод VD3 перегорит. Конденсатор C2 нужен для питания микросхемы в те моменты когда полевой транзистор этой микросхемы открыт, т.к. частота большая (132кГц) достаточно 0.1мкФ. На входе стоит резистор с сопротивлением 11Ом для ослабления бросков тока через диодный мост. Оптрон U2, стабилитрон VD4 и резисторы R3-R5 создают обратную связь для правильной работы микросхемы U1, сопротивления этих резисторов и напряжение стабилизации стабилитрона определяет программа PI Expert. Если требуется источник с другим напряжением на выходе и током то достаточно пересчитать только трансформатор и резисторы R3-R5, если ток на выходе больше 3А то VD3 подобрать с большим током, остальное можно оставить как есть. Начать лучше с трансформатора, для него нужно найти сердечник с зазором, можно например взять сердечник из трансформатора от телевизора:

Тип сердечника определяется по его длине например если длина 28мм то это сердечник EE28.
Есть также сердечники: EE16, EE19, EE20, EE22 и.т.д. от EE5 до ЕЕ320 (или может ещё какие либо есть). Трансформатор обязательно должен иметь зазор и подходить по мощности. Если программа выведет сообщение об ошибке то нужно сделать необходимые исправления. При первом запуске программы выбираете в меню файл-создать

Выбираете в поле "Линейка продуктов" TnySwitch нажимаете "Далее"

Нажимаете "Добавить..." выбираете напряжение и ток нажимаете "ОК"

Нажмите "Выбрать"

Перед вами появится схема, нажмите два раза на трансформатор, выберите сердечник и нажмите "ОК"

Перейдите по вкладке "конструкция трансформатора" и сделайте трансформатор как написано в инструкции

Мотать обмотки надо ровно виток к витку

Очень важно не ошибиться с фазировкой
Перейдите по вкладке "Схема"

Можете поставить такой стабилитрон и резистор как на схеме, можете выбрать другой стабилитрон (аналогично тому как сделано с трансформатором) в этом случае программа добавит последовательно стабилитрону резистор, также можно собрать блок питания по схеме в программе. Рекомендуемый пример разводки печатной платы появится если перейти по вкладке "Макет"

Лучше скачать программу на русском языке.
Плату можно сделать надфилем из фольгированного стеклотекстолита:

Главное делать аккуратно и не сломать надфиль.

Подробнее пример сборки и испытания блока можно увидеть на видео:
Дорожка от вывода 5 микросхемы TNY266 до трансформатора должна быть как можно короче.
Диодный мост DB107 на фотографии выше перевёрнут. TNY266PN можно недорого заказать по ссылке http://ali.pub/txdeu , трансформатор бесплатно вынут (потом перемотан) из платы от телевизора, остальные детали не очень дорогие и большую их часть тоже можно вынуть из телевизора или заказать недорого.
Блок питания готов! Напоследок напоминаю что такие (обратноходовые) источники нельзя перегружать и нельзя недогружать. Хотя в схеме имеются защиты но лучше ими не злоупотреблять.