Двойное оплодотворение у растений. Оплодотворение у растений. Семена и плоды Оплодотворение у растений кратко

Опыление - это перенос пыльцы из пыльников тычинок на рыльце пестика . Различают два типа опыления: самоопыление и перекрестное опыление . При самоопылении пыльцевые зерна переносятся на рыльце пестика того же цветка (горох, тюльпан). У перекрестноопыляющихся растений осуществляется перенос пыльцы из тычинок цветков одного растения на рыльце пестика другого.

Наиболее часто перекрестное опыление осуществляется насекомыми и значительно реже - ветром (береза, осоки), птицами, водой (водные растения).

В процессе длительной эволюции приспособление цветка к опылению насекомыми привело к формированию ярких, хорошо заметных, часто с приятным запахом цветков с нектарниками, вырабатывающими сладкую сахаристую жидкость. Кроме того, у таких растений образуется много пыльцы, которая служит кормом для ряда насекомых. Привлеченные яркой окраской или запахом цветка, насекомые, извлекая нектар из глубины цветка, касаются липкой или шероховатой поверхности пыльцевых зерен, которые прилипают к их телу, Перелетев на другой цветок, насекомое переносят часть пыльцы на рыльце пестика.

У некоторых растений цветки приспособлены к опылению определенными насекомыми. Так, цветки душистого табака опыляются только ночными бабочками, клевер ползучий пчелами, клевер луговой - шмелями.

У цветков ветроопыляемых растений околоцветник отсутствует или плохо развит и не препятствует движению ветра; тычинки длинные, свисающие; пыльца сухая и мелкая, образуется в большом количестве; рыльца пестиков длинные, часто перистые. Большинство ветроопыляемых растений цветет до появления листьев, что облегчает опыление.

При перекрестном опылении, в отличие от самоопыления y растений повышается уровень гетерозиготности потомства, что позволяет ему легче адаптироваться к постоянному изменению условий среды. В то же время самоопыление имеет одно существенное преимущество в сравнении с перекрестным: оно не зависит от погодных условий и посредников, поэтому осуществляется при любых условиях.

Оплодотворение. Попав на рыльце пестика, пыльцевое зерно начинает прорастать. Из вегетативной клетки развивается длинная пыльцевая трубка (ее рост стимулируют ауксины пестика), которая по тканям столбика дорастает до завязи и далее до семязачатка. Из генеративной клетки к этому моменту образуются два спермия, которые спускаются в пыльцевую трубку.

Пыльцевая трубка входит в семяпочку через пыльцевход, ее ядро дегенерирует, а кончик трубки разрывается, освобождая мужские гаметы. Спермин проникают в зародышевый мешок.

Один из спермиев оплодотворяет яйцеклетку с образованием зиготы. Из диплоидной зиготы формируется зародыш нового растительного организма. Второй спермий сливается с центральным диплоидным ядром или с двумя полярными ядрами, образуя триплоидную клетку, из которой впоследствии возникает питательная ткань - эндосперм . В его клетках содержится запас питательных веществ, необходимых для развития зародыша растения.

Слияние одного спермия с яйцеклеткой, а другого с полярными ядрами - двойное оплодотворение - представляет собой уникальную особенность покрытосеменных . Такой способ оплодотворения был открыт в 1898 г. русским цитологом и эмбриологом С. Г. Навашиным.

После оплодотворения семяпочка разрастается и превращается в семя, а в результате разрастания завязи пестика формируется плод. Стенки завязи становятся стенкой плода - околоплодником, внутри которого находятся семена.

Благодаря двойному оплодотворению, происходит быстрое образование питательной ткани. Двойное оплодотворение ускоряет весь процесс формирования семяпочки я семени.

Оплодотворение у растений

состоит в слиянии двух половых клеток - мужской и женской. Произошедшая через такое слияние клетка производит новое растение. При неизменности сути, процесс оплодотворения протекает различно у разных растений; равным образом весьма различно строение мужских и женских половых клеток, из которых первые оплодотворяют и играют в процессе активную роль, вторые являются оплодотворяемыми, и их участие более пассивное. Во многих случаях процесс О. в растительном царстве с его внешней, точнее морфологической стороны прослежен очень точно и обстоятельно; гораздо менее известны внутренние явления, совершающиеся при этом - физиология оплодотворения, хотя и в этом направлении сделаны уже интересные и удачные попытки (см. книгу Клебса, ниже). Несомненно, что в привлечении мужских элементов к женским видную роль играют так назыв. хемотактические и хемотропические явления, примеры чему будут указаны ниже. Во всяком случае для экспериментальных исследований тут открывается обширное и многообещающее поле. В противоположность низшим, споровым растениям, с их весьма разнообразными формами полового акта, у всех высших цветковых растений О. протекает довольно однообразно. В различных статьях, посвященных описанию отдельных групп низших растений (напр., Водоросли, Зеленые водоросли, Грибы), было сообщено и относительно процесса оплодотворения у этих растений; здесь остается, дополнив эти данные существенными подробностями, систематизировать различные формы О. и описать О. у высших, цветковых (иначе семянных) растений. Прежде всего необходимо, однако, указать, что процесс О. не найден до сих пор у довольно многих низших растений, из самых различных групп и отрядов, напр. его нет у бактерий и родственных им сине-зеленых водорослей (иначе водорослей-дробянок) - организмов, весьма низко стоящих по своему строению и развитию; нет его также у многих грибов - у базидиальных (к которым относятся между прочим наши съедобные грибы и "поганки"), далее у многих сумчатых, вероятно, у большинства их. У ржавчинных и головневых грибков существование О. пока недостаточно доказано. Предполагают, что грибы эти когда-то обладали оплодотворением, но постепенно утратили его, сохранив бесполые способы размножения. Их называют поэтому апогамными, в отличие от форм агамных, которые никогда, по-видимому, не имели оплодотворения. К таким агамным растениям принадлежат вышеупомянутые бактерии и сине-зеленые водоросли [В ст. Апогамия это явление неверно определено]. Превосходные случаи несомненной апогамии представляют некоторые папоротники, напр. Pteris cretica, y которого молодые растеньица вырастают всегда бесполым путем и как раз из тех мест заростка, где должны были находиться женские половые органы. Другой папоротник Aspidium filix mas. var. cristatum стал апогамным лишь под влиянием культуры. - Клетки, сливающиеся при акте О., получили название гамет. Они либо обладают самостоятельным (активным) движением, либо нет. В первом случае их называют плано- , во втором аплано- гаметами. Если сливающиеся гаметы одинакового строения, т. е. нельзя заметить разницы между мужской и женской гаметами, то слияние их и процесс оплодотворения называют изогамным, изогамией, при существовании различий - гетерогамным, гетерогамией. Между той и другой формой О. существуют формы промежуточные, переходные. Далее, при изогамии может происходить слияние (копуляция) двух плано- или же двух аплано-гамет. При гетерогамии бывает слияние плано- с апланогаметой или же двух апланогамет.

Изогамия. Копуляция планогамет. Эта форма О. встречается у многих зеленых водорослей, например у Ulothrix, у Botrydium (обе водоросли изображены на таблице при ст. Водоросли; см. также ст. Зеленые водоросли). У той и у другой водоросли образуются два сорта зооспор, одни для бесполого размножения, другие для полового. Половые зооспоры-гаметы маленькие, грушевидной формы, каждая с 2 ресничками. Из каждой клетки Ulothrix их образуется 16-32, а у Botrydium помногу. Гаметы копулируют, сливаясь по две, реже по 3, а иногда даже по 4 (см. фиг. 5 b , с , 12 с. тбл. Водоросли). При этом они сцепляются сначала бесцветными носиками, на которых сидят реснички, потом поворачиваются, прикладываются друг к другу бочком, наконец постепенно сливаются (все время продолжая двигаться) в крупную зооспору уже с 4 ресничками. Зооспора скоро останавливается, теряет реснички и превращается в неподвижный шарик, окружающийся оболочкой (фиг. 5 d , е ). Продукт копуляции называют зигоспорой или короче зиготой, также изоспорой (как продукт изогамии). Зигоспора превращается в новое растеньице непосредственно или производя предварительно зооспоры (фиг. 5 f ; g ), из которых каждая вырастает в новую водоросль. Интересно, что гаметы у Ulothrix копулируют только тогда, когда происходят из 2 различных нитей. Кроме того, по Клебсу, копуляция гамет происходит только при температуре ниже 25° Ц., уже при 26° - 27° Ц. копуляции не бывает, а зоогонидии прямо останавливаются, округляются и превращаются в споры, прорастающие в новую водоросль. Впервые копуляция была подмечена (Прингсгейм, 1869) у Pandorina morum, маленькой шарообразной водоросли, представляющей из себя колонию из 16 клеток, похожих на крупные зооспоры, каждая клетка с 2 ресничками. Клетки толстыми концами обращены к центру колонии, а узкими носиками наружу. Колония окружена слизистой оболочкой, через которую высовываются наружу 32 реснички, служащие для передвижения всей колонии. При бесполом размножении каждая из 16 клеток распадается повторным делением на 16 маленьких клеточек, образующих новую колонию пандорины. При половом размножении клетки колонии также распадаются на маленькие клеточки, но последние не слагаются в колонию, а выплывают наружу в виде мелких двуресничатых зооспор - гамет. Гаметы копулируют вышеописанным способом и образуют зиготу, из которой выходит через некоторое время (так наз. "период покоя") одна крупная зооспора, которая затем распадается на 16 маленьких клеточек, слагающихся в новую колонию. Примечательно, что у пандорины гаметы не одинаковой величины. Смешав гаметы из 2 различных колоний, видим, что копулируют гаметы как одинаковой величины (т. е. мелкая с мелкой, крупная с крупной), так и разной (мелкая с крупной), и последнее бывает даже чаще. Очевидно, пандорина обнаруживает стремление перейти от изогамии к гетерогамному оплодотворению.

Изогамия. Копуляция апланогамет. Этот тип встречается как у водорослей, так и у грибов. Отличный, давно известный пример такого рода полового акта дает нам спирогира (Spirogyra) и близкие к ней водоросли - их соединяют в группу конъюгат (Conjugatae) именно на основании особенностей их полового процесса (конъюгация то же, что копуляция). Среди грибов эту форму О. находим у мукоров (Mucor) и их сродичей, представителей целой группы, называемой Zygomycetes. Спирогира - весьма обыкновенная пресноводная водоросль, ее зеленые ниточки заметны и простым глазом. Под микроскопом в клетках бросаются в глаза одна или несколько изящных ленточек, спирально завитых и зазубренных по краям (фиг. 39 тбл при ст. Водоросли; см. еще ст. Зеленые водоросли), - это хроматофор, их называют также хлорофильными лентами. При копуляции содержимое одной клетки сливается с содержимым другой, причем сначала клетки двух рядом лежащих нитей дают сбоку выростки - отроги, растущие навстречу друг другу (фиг. 39); скоро отроги эти сталкиваются, разделяющая их перегородка растворяется и таким способом образуется канал, через который все содержимое одной клетки переливается в другую (фиг. 40). То содержимое, которое переливается, считается мужской гаметой, которое остается на месте - женской. Бывает, что сливается содержимое не супротивно-лежащих клеток, а соседних в одной и той же нити, в таком случае копуляционный канал огибает поперечную перегородку, разделяющую эти клетки. Во всяком случае продукт копуляции облекается собственной толстой оболочкой и превращается в зиготу (фиг. 40 b , с .), из которой весной вырастает новая ниточка спирогиры. Особенно примечательны с точки зрения изучения процесса О. явления, происходящие внутри зиготы (Хмелевский). Сначала в зиготе две хлорофильных ленты - одна женская, другая, пришедшая с мужской гаметой. Мужская лента начинает съеживаться, желтеть и постепенно разрушается и остается одна женская, так что потомство получает хроматофоры от одной матери; подобное мы встречаем и у высших цветковых растений (см. ниже). Что касается до клеточных ядер, то мужское сливается с женским, но дальше ядро снова делится на 2 новых, а эти еще раз, так что получается 4 ядра. Два из них скоро сближаются и сливаются в одно, а два других распадаются и исчезают, - в зиготе опять находится только одно ядро. Сходные явления замечены Клебаном у клостерия (Closterium), водоросли, родственной спирогире по развитию, но одноклетной и имеющей вид маленького, слабо изогнутого серпа. У клостерия мужское и женское ядра также сливаются в зиготе, но позже, именно только весной при прорастании зиготы. Произошедшее через слияние ядро затем делится пополам и каждая половина делится еще раз. В то же время распадается и все содержимое зиготы пополам, так что образуются 2 клостерия и в каждом по 2 ядра. Но главный интерес в том, что и здесь сохраняется только одно ядро, более крупное, а другое, поменьше, разрушается и скоро совсем исчезает. Не выходя из пределов группы Conjugatae, мы встречаемся с формами, у которых разница между мужской и женской гаметами выражена в большей или наоборот в меньшей степени, нежели у спирогиры. Так у Sirogonium клетки с мужскими гаметами меньше чем с женскими, ясно, что это уже стремление перейти к гетерогамии. Наоборот у Mesocarpus обе гаметы направляются навстречу друг другу и сливаются на полпути посередине копуляционного канала, образуя здесь зиготу. Вследствие этого у Mesocarpus нельзя различить мужскую от женской гамету и мы имеем случай строгой изогамии. В равной степени изогамны десмидиевые водоросли (Desmidiaceae), к числу которых принадлежит и вышеупомянутый клостерий. Подобно тому как у Mesocarpus совершается копуляция у плесневого грибка - мукора, Mucor (см. статью Грибы и приложенную к ней табл. II). Зигоспора мукора, прорастая, дает росток, на верхушке которого обыкновенно образуется спорангий (табл. II, фиг. 2). В некоторых случаях копуляционные отроги мицелия у мукора, не успев слиться, приносят тем не менее на концах своих по споре и притом совершенно похожей на зигоспору. Это случай утраты полового акта - апогамии. Такие споры называют азигоспорами.

Гетерогамия. Слияние мужской планогаметы с женской апланогаметой. Весьма распространенная форма полового акта, при которой мужские гаметы всегда активно подвижны; они носят название живчиков, сперматозоидов или антерозоидов и образуются в специальных органах антеридиях; женские гаметы неподвижны, их называют оосферами или яйцами, так как они соответствуют вполне яйцам животных, они формируются в оогониях или, у более высоко организованных споровых растений - в архегониях. Эту форму полового процесса, называемую оогамией, хорошо можно наблюдать у двух часто встречающихся у нас пресноводных водорослей - эдогония (Oedogonium) и вошерии (Vaucheria; см. ст. Зеленые водоросли и тбл. при ст. Водоросли). У эдогониев образуется в оогонии одна шарообразная оосфера или яйцо темно-зеленого цвета с бесцветным воспринимающим пятном на вершине (фиг. 7). Сперматозоиды имеют вид маленьких зооспор с венцом ресничек вокруг бесцветного носика (фиг. 9, b ). Проникнув через отверстие в оболочке оогония, сперматозоид утыкается носиком в воспринимающее пятно яйца (фиг. 7) и скоро совсем сливается с яйцом. Оплодотворенное яйцо сейчас же окружается оболочкой, вследствие чего становится невозможным проникновение в него других сперматозоидов, и превращается в ооспору. Применяя метод окраски Клебана, оказывается, что протоплазма сперматозоида сливается с протоплазмой яйца, а его ядро постепенно приближается к ядру яйца - сначала оно значительно меньше ядра яйца и более компактное, но по пути несколько увеличивается и как бы разрыхляется - скоро оно достигает ядра яйца и мало-помалу с ним совершенно сливается. После периода покоя (у одних видов более короткий, у других более продолжительный - целую зиму, например) содержимое ооспоры распадается на 4 крупных зоооспоры, из коих каждая вырастает в новую ниточку эдогония. У вошерии оплодотворение происходит обыкновенно ночью и, если хотят следить за ним днем, то нужно водоросль с вечера поместить на лед. Перед О. у вошерии небольшая часть содержимого оогония выбрасывается наружу в виде бесцветной слизистой капли, а остальное содержимое формируется в яйцо. Уже через несколько минут после погружения очень маленького сперматозоида в воспринимающее пятно яйца, оплодотворенное яйцо окружается тонкой оболочкой, а спустя несколько часов исчезает и воспринимающее пятно и ооспора становится равномерно зеленого цвета. Зрелая ооспора красно-бурого цвета, покрыта толстой оболочкой и переполнена крупными каплями масла, служащего запасным питательным веществом для будущей молодой вошерии, которая вырастет из ооспоры. К тому же отделу Зеленых водорослей (Chlorophyceae), к которому принадлежат только что упомянутые водоросли, относится и вольвокс (Volvox), подобно пандорине - шарообразная подвижная колония, состоящая из гораздо большего числа клеточек (см. тбл. при ст. Водоросли, фиг. 4). Шарики вольвокса заметны и простым глазом. При половом размножении только часть клеток превращается в половые органы; при этом одни из них разрастаются в грушевидные оогонии с одной круглой оосферой внутри, а другие превращаются в антеридии,и внутри которых образуется много мелких булавовидных живчиков (сперматозоидов) с 2 ресничками (фиг. 4). В массе живчики желтого цвета, оосферы - темно-зеленые. Оплодотворенная живчиком оосфера облекается оболочкой и превращается в ооспору. Таким образом, у вольвокса типичная оогамия. Но существует водоросль, родственная пандорине и вольвоксу - Eudorina elegans, у которой О. происходит в форме, средней между изогамией и оогамией. Ко времени полового размножения колонии Eudorina дифференцируется на женские и мужские. Каждая из клеток женской колонии превращается в шаровидное яйцо, каждая клетка мужской колонии делится повторно и превращается в целый пучок маленьких живчиков, похожих на живчики вольвокса. Высвободившись из колонии и плавая в воде, пучки живчиков наталкиваются на женские колонии и распадаются. Тогда живчики добираются до яиц и один из них сливается с яйцом. Оплодотворенное яйцо превращается, как обыкновенно, в ооспору. Подобные переходные по своему О. водоросли существуют также и между так называемыми темноцветными или бурыми водорослями, - см. ниже. У фукусов (см. это слово и таблицу при ст. Водоросли, фиг. 49, 50), крупных морских водорослей коричневого цвета различных оттенков, половое размножение (бесполого у них совсем не известно) происходит в форме типичной оогамии. Оогонии и антеридии образуются у них в особых ямках - вместилищах, так называемых conceptacula (см. табл. при ст. Водоросли, фиг. 22). В оогонии образуется не одно, а 8 круглых яиц (фиг. 23, 24). Впрочем, у других бурых родственных фукусу водорослей образуется яиц меньше - 4-2 или даже всего одно, как у атлантической Himanthalia lorea. Живчики формируются в мешочках-антеридиях помногу, они очень мелки и имеют 2 реснички, отходящие сбоку (фиг. 25-27). В море во время отлива зрелые яйца выталкиваются из оогония на свободу и скопляются у отверстия conceptaculum; к этому же времени и антеридии отрываются от несущих их веточек и скопляются там же. С наступлением прилива антеридии открываются и выпускают живчиков, устремляющихся к яйцам и начинающих так быстро вертеться около них, что огромные, по сравнению с ними, яйца начинают вихрем кружиться в воде (фиг. 28). В конце концов один из живчиков проникает в яйцо и оплодотворяет его, после чего оно покрывается оболочкой и превращается в ооспору, из которой вырастает новый фукус. Проще организованные бурые водоросли и размножаются проще. Из них морская бурая водоросль - кутлерия (Cutleria) производит подвижные двуресничатые гаметы, но различной величины: одни покрупнее - они образуются по одной в клетке, другие помельче - их образуется в клетке по несколько. Поплавав немного, крупная гамета останавливается, втягивает реснички, округляется и превращается в яйцо, при этом ее бесцветный носик переходит в воспринимающее пятно яйца. Тогда к ней подплывают мелкие гаметы, одна из которых утыкается носиком в воспринимающее пятно и скоро совсем сливается с яйцом - очевидно, это мужская гамета, вполне соответствующая сперматозоиду фукусов. Таким образом, на наших глазах происходит превращение женской планогаметы в неподвижное яйцо. Из сказанного выше можно заключить, что гетерогамия и специально оогамия развилась из более простой формы оплодотворения - из изогамии. Очевидно, что изогамные водоросли - более древние, половые же различия возникли лишь со временем и постепенно. Для всех более высоко организованных споровых растений (лучиц, мхов, папоротников, хвощей, плаунов) оогамия оказалась наиболее удобной формой полового акта; она стала у них единственной формой О. и вполне закрепилась. У всех у них мужские элементы - сперматозоиды различного строения, образующиеся в антеридиях. Яйца формируются, однако, не в одноклетных оогониях, как у водорослей и грибов, а в органах более сложного устройства, в так наз. архегониях. Что касается до устройства половых органов и внешней стороны процесса О., то об этом сказано в специальных статьях, трактующих об этих растениях; см. также Заросток. При О. сперматозоиды устремляются во множестве внутрь архегония, но только один из них сливается с яйцом. Оплодотворенное яйцо покрывается оболочкой, потом делится и производит новое поколение. Исследования Пфеффера показали, что у мхов и папоротников живчики привлекаются внутрь архегония различными веществами, выделяющимися из архегония вместе со слизью (хемотаксис живчиков). Вещества, действующие специфически на живчиков, различны; у папоротников, напр., яблочная кислота (ее содержится в слизи архегония около 0,3 %), у лиственных мхов - тростниковый сахар, у печеночного мха Marchantia - пока неизвестное вещество. Что дело тут именно в химич. раздражении живчиков, показывают опыты Пфеффера с искусственным вовлечением живчиков в капиллярные трубочки. Если запаянную на одном конце стеклянную капиллярную трубочку наполнить под колоколом воздушного насоса очень слабым (0,01-0,1 %) раствором какой-нибудь соли яблочной кислоты и затем погрузить открытым концом в каплю воды с живчиками папоротника, то последние устремятся внутрь трубочки. Для опыта с живчиками мха заменяют яблочную кислоту тростниковым сахаром.

Гетерогамия. Слияние двух апланогамет. Такого рода гетерогамия встречается у грибов, у водорослей и почти у всех цветковых растений. Среди грибов ее находим у представителей двух семейств: у пероноспоровых (Peronosporeae) и у сапролегниевых (Saprolegnieae). Женские половые органы пероноспоры (Peronospora) образуются на концах ветвей в виде шарообразных органов, наполненных густым содержимым. Это - оогонии; содержимое их дифференцируется на две части: центральную густозернистую, гоноплазму, превращающуюся в одну оосферу или яйцо, и периферическую, не столь зернистую, не принимающую участия в образовании яйца и наз. периплазмой. Мужские органы залагаются под оогонием в виде боковых веточек гифы, несущей оогонии. Веточки, нарастая, загибаются и прикладываются к оогонию, в то же время концы их вздуваются булавой и превращаются в антеридии. В этих антеридиях, однако, никогда не образуется живчиков. О. происходит иначе. Антеридий пускает отрог, который пробуравливает оболочку оогония и доходит до самого яйца, тогда верхушка отрога вскрывается и часть содержимого антеридия - зернистая гоноплазма - переливается к яйцу и сливается с ним. В антеридии остается, как и в оогонии, лишь постенный слой плазмы - периплазма. Оплодотворенное яйцо покрывается сначала тонкой оболочкой, которая постепенно утолщается, потребляя на образование своего наружного слоя, так наз. эписпория, периплазму. При прорастании ооспора дает прямо нить мицелия или же предварительно производит зооспоры. У сапролегний половые органы устроены так же, как и у пероноспоры (см. табл. при ст. Грибы, фиг. 10), но в оогониях не бывает периплазмы, а все содержимое оогония распадается на несколько яиц (на фиг. 10 D их только 2, но бывает и больше). Антеридии и у них образуют отроги, проникающие в оогонии, но переливания содержимого антеридия здесь не удалось наблюдать. Предполагают поэтому, что антеридии у сапролегний хотя и образуются, но более не функционируют. Это подкрепляется тем обстоятельством, что в некоторых случаях антеридиев и совсем не образуется, что не мешает яйцам в оогонии превращаться в нормальные ооспоры, которые происходят, значит, партеногенетически (партеноспоры). Итак, сапролегнии дают нам новый пример апогамии. Относительно существования О. у сумчатых грибов (Ascomycetes) мнения ботаников различны. Во всяком случае, где оно имеется, оно принадлежит к рассматриваемой категории гетерогамии. Женский орган, соответствующий оогонию, называется у них аскогоном (т. е. органом, производящим аскусы, сумки), а мужской, соответствующий антеридию пероноспоровых - поллинодием. Так как долго не могли заметить переливания содержимого из поллинодия в аскогон, а с другой стороны стали известны случаи образования сумок со спорами несомненно без всякого предварительного полового акта, то исследователи склонились считать все сумчатые грибы безвозвратно апогамными. Однако, недавно удалось Герперу (Harper) наблюдать, применяя метод окраски и микротомных разрезов, у сумчатого грибка Sphaerotheca слияние содержимого, а главное - слияние ядер мужского (поллинодия) с женским (аскогона). Оплодотворенный аскогон разрастается в толстую нить, состоящую из клеточек, из которых одна у Sphaerotheca скоро сильно вздувается и превращается в мешок (аскус) с 8 спорами. После этих исследований Герпера нужно принять, что у некоторых, по крайней мере, сумчатых грибов существует половой процесс. Гетерогамия этого же типа, но иногда в чрезвычайно усложненной форме существует у красных водорослей (см. Красные водоросли). Женский половой орган их - прокарп - состоит из двух частей: оплодотворяемого карпогона и передающей О. трихогины. Мужской орган - спермогоний (в нем образуются оплодотворяющие элементы) - мелкие шарообразные спермации. Содержимое спермаций, приносимых пассивно водой к трихогине, переливается через трихогину и сливается с яйцом, находящимся в карпогоне. В некоторых случаях констатировано и слияние мужского и женского ядер (Nemalion, Batrachospermum). Оплодотворенный карпогон образует сложным путем (см. Красные водоросли) карпоспоры.

О. у высших (цветковых или семянных) растений происходит в форме гетерогамии. Мужские и женские половые клетки неспособны к активному передвижению, стало быть, апланогаметы; только очень недавно (1897) японские ученые Хиразе и Икено открыли существование сперматозоидов у двух цветковых растений - у саговой пальмы (Cycas revoluta) и у гинко (Ginkgo biloba); оба эти растения принадлежат к голосемянным (Gymnospermae), следовательно, к низшей группе среди цветковых растений. Познакомимся сначала с процессом О. у скрытосемянных (Angiospermae), к которым принадлежит огромное большинство цветковых растений. Мужские половые органы у них - тычинки, женские - пестики. Тычинка состоит из нити и прикрепленного к ее верхушке пыльника (см. схематическую фиг. 1, изображающую цветок [Познакомиться с устройством половых органов цветка всего лучше на крупных цветках, напр. лилии.] в разрезе; 2 тычинки, cc - их нити, а и b - пыльники; при а пыльник поперек перерезан, видны 4 гнезда, при b - вдоль, видны цветневые пылинки).

Внутри пыльника образуется цветень или иначе плодотворная пыльца; она состоит из мелких крупинок или пылинок (фиг. 1). Размеры и формы пылинок чрезвычайно разнообразны у различных растений (см. Цветень), для примера см. фиг. 2 и 3.

Фиг. 3. Зрелая цветневая пылинка сосны (Pinus silvestris). Увелич. 400.

Каждая пылинка одета двойной оболочкой - наружная, кутинизированная, называется экзиной, внутренняя, более нежная, состоящая преимущественно из пектиновых веществ - интиной. Поверхность пылинки часто покрыта шипиками, валиками или выпуклыми, нередко чрезвычайно красивыми узорами. Содержимое пылинки состоит из 2 голых клеточек очень неравной величины (см. фиг. 2). Маленькая клеточка называется антеридиальной, так как она соответствует антеридию высших споровых растений, а большая вегетативной - она соответствует всей остальной (вегетативной) части заростка у этих растений. Вся пылинка таким образом = микроспоре разноспоровых папоротников и плаунов (см. Водяные папоротники). Важно, что при О. играет роль только маленькая антеридиальная клеточка, вегетативная же прямого участия в этом процессе не принимает. Обращаясь снова к схематической фиг. 1 видим, что пестик состоит из 3 частей: завязи (f ), столбика (g ) и рыльца (h ). Внутри завязи находится крупное яичко, называемое также семяпочкой, так как из нее происходит семя. Яичко сидит на ножке (n ), посредством которой прикрепляется к нижней части (дну) завязи. Внутренняя часть яичка называется ядром (ss ) - оно облечено 2 покровами (р и q ; бывает и один покров). Место отхождения покровов от яичка получило наименование халазы (chalaza, о ). Покровы не смыкаются вплотную, а оставляют небольшой узенький канал, ведущий вглубь яичка, это - семявход или микропиле (micropyle, т ). Внутри яичка находится нежный зародышевый мешок (t ), редко бывает несколько таких мешков. Заметим, что он соответствует макроспоре разноспоровых папоротников и плаунов. В зародышевом мешке посредине лежит клеточное ядро, а на концах по 3 голых (без оболочки) клеточки. Из них 3, лежащие ближе к семявходу, составляют так наз. лицевой аппарат, в состав которого входит яйцо (фиг. l, z; фиг. 4, о - при большем увеличении), которое отнюдь не нужно смешивать с вышеупомянутым яичком и 2 клеточки, остающиеся бесплодными (фиг. 1, v ; фиг. 4, s) - их наз. синергидами или вспомогательными, хотя не известно с точностью, какую помощь оказывают они при О.

Фиг. 4. Funkia ovata. A - верхушка ядра яичка (nucellus, n ) и зародышевого мешка с яйцевым аппаратом, до оплодотворения: o - яйцо, s - синергида. B - во время оплодотворения; t - пыльцевая трубочка. Увелич. 600.

Еще менее известно назначение 3 других клеточек, лежащих в противоположном конце мешка и называемых антиподами. Полагают, что все 6 клеток вместе представляют образование, соответствующее женскому заростку споровых растений, только в сильно редуцированном виде. Теперь обратимся к самому процессу О. Зрелая пыльца из пыльников переносится на рыльце пестика, у одних растений с помощью ветра, у других - воды, у третьих - насекомых (см. Опыление). Много пропадает при этом пыльцы, но некоторые пылинки достигают цели - происходит опыление. Попав на рыльце, пылинки прилипают к нему и под влиянием выделяемой рыльцем липкой жидкости - прорастают. При этом интина пылинки вытягивается в длинную пыльцевую или цветневую трубочку, нередко проходя через особые, заранее намеченные места в оболочке пылинки, - места, где экзина отсутствует или образует особые крышечки, приподнимаемые прорастающей трубочкой. Трубочка растет дальше и дальше, проходит сначала рыльце, потом столбик, спускаясь по особому канальцу столбика или пробираясь среди его центральной рыхлой паренхимы, раздвигая клетки, вступает затем в завязь и, наконец, достигает верхушки зародышевого мешка (фиг. 1, 1). Обыкновенно прорастают несколько пылинок (фиг. 1, ii ), но так как пыльцевые трубочки растут неодинаково быстро, то из них одна приходит первой к цели и производит О. Время, необходимое для прохождения трубки до яйца, иначе протекающее от опыления до О. - различно, иногда это всего несколько часов, иногда несколько дней, напр. у обыкновенного шафрана 3 дня, у орхидных 10 дней, а у сосны О. происходит лишь на другой год после опыления - пыльцевая трубочка у них замирает на зиму и продолжает расти следующей весной. Прорастание пыльцы может происходить не только на рыльце, но и в капле сахаристой жидкости или просто на ломтике арбуза и т. п. сладких плодов. Весьма вероятно (опыты японца Миуши), что пыльцевая трубочка стремится вглубь к зародышевому мешку под влиянием химического раздражения (хемотропизм пыльцевой трубочки), следовательно, под влиянием той же причины, которая заставляет живчиков у споровых растений стремиться внутрь архегония (ср. выше). Не всегда, однако, пыльцевая трубочка проникает к зародышевому мешку через естественный семявход. Исследования Трейба (Treub) показали, что у казуарин (см.) она подходит как раз с противоположного конца, именно через халазу. Трейб предложил даже отделить казуарин в особый класс - халазогамных растений, противопоставив их всем прочим скрытосемянным растениям - порогамным, у которых О. происходит через пору - семявход. Впоследствии исследования С. Г. Навашина показали, что халазогамия свойственна также некоторым самым обыкновенным у нас растениям - березе, ольхе, вязу и др. Тем или другим путем конец трубочки доходит до зародышевого мешка, оболочка мешка в этом месте растворяется и трубочка достигает, наконец, яйца. По мере роста трубочки передвигается и содержимое пылинки, так что самая пылинка и более старые части трубочки постепенно опоражниваются. Во время передвижения антеридиальная клеточка пылинки делится на 2 голых генеративных клеточки. На фиг. 5 А изображен конец пыльцевой трубочки с 2 генеративными клеточками (gz, gz, ) впереди их ядро вегетативной клетки (ok ), которая собственно и вытянулась в трубочку, увлекая с собой антеридиальную клетку.

Ядро это разрушается и никакого участия в О. не принимает. Оплодотворяет одна из генеративных клеточек: она выскользает из трубочки в яйцо и сливается с ним. Та же фиг. 5, B, C, D представляет главные моменты О. В - проникновение в яйцо генеративной клеточки, ядру клеточки (sk ) предшествуют 2 центрозомы (с ), у ядра яйца (ek ) также пара центрозом (с ), ch - зачатки хроматофоров. С - начало слияния ядра генеративной клеточки (мужского) с ядром яйца (женским). D - продукт слияния, оплодотворенное яйцо, мужское и женское ядра слились в зачатковое ядро (kk ). Протоплазма генеративной клеточки сливается также с протоплазмой яйца, равным образом сливаются (по Гиньяру) и их центрозомы и дают пару центрозом зачаткового ядра (cc ). По другим показаниям, центрозомы зачаткового ядра ведут свое происхождение от центрозом яйца или, гораздо реже, от центрозом генеративной клетки. Что касается до хроматофоров, то их поставляет для будущего растения одно яйцо, без участия мужской клетки. Оплодотворенное яйцо окружается тонкой оболочкой, потом делится и превращается в зародыш. Что касается до синергид, то они скоро разрушаются и исчезают; по-видимому, содержимое их идет на питание оплодотворенного яйца. Особый интерес представляет судьба хроматина клеточных ядер при процессе О., прослеженная всего лучше у лилии. Обыкновенные ядра вегетативных клеток у этого растения дают при кариокинетическом делении 24 хроматиновых сегмента (хромосомы), которые, расщепляясь вдоль пополам, в том же числе 24-х переходят в дочерние ядра. Когда же образуются половые клетки, происходит сокращение - редукция хромосом, так что в клеточных ядрах яйца и генеративной клеточки оказывается вдвое меньше хромосом, т. е. по 12 в каждом. Благодаря этому обстоятельству при слиянии мужского ядра с женским получается зачатковое ядро с нормальным количеством хромосом, из коих 12 отцовского и 12 материнского происхождения. - Перейдем теперь к голосемянным. Они отличаются некоторыми существенными чертами в устройстве половых органов и прежде всего тем, что у них нет завязи. Яичко у них состоит из ядра (nucellus) - фиг. 6, nc , окруженного одним покровом (i ); семявход очень широк, так что цветневые пылинки (р ) попадают прямо на ядро яичка и потому цветневые трубочки (t ) у голосемянных гораздо короче, нежели у скрытосемянных, что не мешает им у сосны, как упомянуто выше, очень долго пробираться до яйца.

В ядре находится зародышевый мешок, как и у скрытосемянных, но устройство его иное и он весь заполняется еще до О. паренхиматическими клетками. Некоторые из этих клеток, расположенные на верхушке мешка, превращаются в так назыв. корпускулы или архегонии - органы совершенно соответствующие по строению и по назначению архегониям высших споровых растений; их бывает от 2 до 15 (см. фиг. 6, где их представлено 2) [Весь комплекс клеток, заполняющий зародышевый мешок, соответствует женскому заростку, а весь мешок целиком, как и у скрытосемянных - макроспоре; микроспоре соответствует и здесь цветневая пылинка]. В основной вздутой части архегонии лежит яйцо (о ). Содержимое цветневой пылинки дифференцируется у голосемянных также на 2 неравные клеточки, но они не голые, так как между ними находится перегородка. Фиг. 3 изображает пылинку сосны; форма ее весьма характерна - пылинка имеет по бокам два пузыря, наполненных воздухом - они произошли через выпячивание экзины; пузыри эти облегчают перенесение пылинки ветром. Скоро внутри пылинки оказывается не две, а несколько маленьких клеточек, покрытых оболочками, из них одна становится антеридиальной. При прорастании пылинки антеридиальная клеточка перемещается в конец трубочки и распадается на 2 генеративных клеточки. О. заключается, как и у скрытосемянных, в слиянии генеративной клеточки с яйцом. Фиг. 7 А, B , С представляет постепенные стадии процесса О. у обыкновенной ели: клеточное ядро генеративной клеточки (sn ) выскальзывает из конца пыльцевой трубочки (p ), подходит к ядру яйца (on ) и сливается с ним.

Произошедшее через слияние зачатковое ядро спускается на дно яйца (вместе с тем и архегониия) и здесь повторным делением дает 4 ядра; скоро мы находим в этом месте 4 клеточки, расположенные в одной плоскости (фиг. 7, D ). Клеточки делятся поперечными перегородками, так что получается несколько четырехклетных этажей (E , F ). Затем, один из этажей вытягивается в 4 длинные нити, унося на вершине вглубь заростка клетки, служащие для развития зародыша (G ). Таким образом, начинают формироваться 4 зародыша, но доразвивается обыкновенно только один. Равным образом, хотя было бы оплодотворенно и несколько архегониев, в зрелом семени находится один только зародыш, как и у скрытосемянных. Зародыш этот лежит среди остатков заростка или, как его называют здесь - эндосперма (белка). Так как описанный способ передачи мужского элемента О. через трубочку (пыльцевую) характерен для всех цветковых растений и отличает их от всех высших споровых, то Энглер предложил называть эти растения сифоногамными (Embryophyta siphonogama), противопоставляя их производящим сперматозоиды высшим споровым - зоидиогамным растениям (Zoidiogamae). Недавно, однако, Хиразе и Икено открыли существование сперматозоидов и у цветковых растений - у Cycas и Ginkgo, принадлежащих к голосемянным. В конце пыльцевой трубочки у них генеративные клеточки превращаются в 2 овальных сперматозоида, снабженных многими ресничками. Сперматозоиды плавают довольно быстро в жидкости, окружающей архегонии, добираются до яйца и оплодотворяют его. Причина образования сперматозоидов кроется, по мнению Икено, в том, что пыльцевая трубочка у этих растений очень коротка и не доходит до архегония, так что без помощи подвижных мужских гамет, т. е. сперматозоидов, О. у них было бы невозможно. Во всяком случае, существуют растения одновременно сифоногамные и зоидиогамные, являющиеся в высшей степени интересной переходной формой по своему О. между высшими споровыми и цветковыми растениями. Специальная литература об О. у растений чрезвычайно обширна. Подробности и литературные цитаты можно найти в следующих сочинениях: проф. И. П. Бородин, "Процесс оплодотворения в растительном царстве" (2-е изд., 1896); F. Pax, "Allgemeine Morphologie der Pflanzen" (1890); van-Tieghem, "Traité de botanique", том I, 1891; E. Strasburger, "Das botanische Practicum" (3 изд., 1897); G. Klebs, "Die Bedingungen der Fortpflanzung bei einigen Algen und Pilzen" (1896); S. Hirase, "Untersuchungen über das Verhalten des Pollens von Ginkgo biloba" ("Botanisches Centralblatt", 1897, № 2-3); prof. I. Ikeno, "Vorlaüfige Mittheilung über die Spermatozoiden bei Cycas revoluta" (там же, № 1).

Оплодотворение растений

Не всякая пыльца, попавшая на рыльце пестика, прорастает и достигает завязи, то есть опыление далеко не всегда сопровождается оплодотворением. Чтобы оно произошло, необходимы соответствующие условия. Одним из этих условий является зрелость рыльца. В этом случае сосочки рыльца выделяют сладкий сок, который способствует не только прилипанию пыльцы, но и является той средой, на которой прорастает пыльца. Если концентрация сока, выделяемого рыльцем, приблизительно равна концентрации содержимого пыльцевого зерна (изотонические растворы), то прорастание идет нормально. Если концентрация сока на рыльце будет выше (гипертонический раствор), то возможен плазмолиз внутри пыльцевого зерна или, если и будет рост, то очень медленный. И, наконец, если концентрация сока на рыльце будет ниже, чем концентрация содержимого пыльцевого зерна, то последнее, имея высокий тургор, еще больше повысит его и лопнет.

На свойства семян большое влияние оказывает возраст пыльцы и пестика, количество пыльцы, попадающей на рыльце пестика, и ряд других условий. Все эти факторы пока мало учитывают в практике семеноводства и селекции, но они оказывают определенное влияние на потомство. Например, стареющие цветки пшеницы дают семена с преобладанием отцовских признаков, а у гороха, наоборот, из первых цветков развиваются семена с отцовскими признаками, а из всех последующих – семена, все больше наследующие материнские свойства.

Оплодотворение наиболее благоприятно протекает у молодых завязей при наличии большого количества пыльцы.

Установлено также, что как чрезмерная сухость воздуха, так и дождь вызывают полную гибель пыльцы, и поэтому суховей и затяжной дождь в период цветения снижают урожай. Высокие и низкие температуры также не благоприятствуют оплодотворению. Нормальное оплодотворение протекает только при условии правильного питания материнского растения и его нормального развития.

Например, по данным Рида, цинк оказывает большое влияние на оплодотворение и образование семян у гороха, фасоли, сорго и других культур. При выращивании на питательном растворе без цинка семена не завязываются, при концентрации цинка 0,00002 г на 1 л развиваются маленькие бобы, но без семян, а при концентрации 0,0001 г на 1 л образуются и семена.

Успешное оплодотворение возможно только в том случае, если растение находится в здоровом состоянии, так как всякая болезнь снижает завязывание семян.

Для нормального оплодотворения необходимо такое количество пыльцы, которое с избытком превышало бы потребность семяпочки. Опытами И. Н. Голубинского показано, что на искусственной среде прорастание и рост пыльцевых трубок усиливаются при повышенной густоте посева пыльцы. Аналогичное явление происходит и на рыльце пестика: чем больше пыльцы, тем лучше условия для прорастания пыльцевых трубок.

Попадающая на рыльце пыльца разнокачественна не только генетически, но и физиологически. Это обусловливает разную реакцию материнского растения и ведет в одном случае к образованию семени с высокой жизненностью, а в другом – со слабой, которая может вызвать гибель семени еще в фазе эмбрионального развития, что часто и наблюдается у гречихи.

Физиологическая несовместимость пыльцы и рылец связана с другим явлением – избирательностью оплодотворения. Как правило, пыльца чужого сорта лучше избирается при оплодотворении, чем пыльца своего сорта и, тем более своего растения. Поэтому чужая пыльца, даже если по количеству она во много раз уступает пыльце своего сорта, обладает весьма значительным оплодотворяющим эффектом, что и отмечено во многих работах по гибридизации.

О влиянии пыльцы некоторых сортов гречихи на урожайность материнского растения говорят следующие данные (табл. 1).

Таблица 1

Урожайность гречихи сорта Богатырь при опылении ее пыльцой разных сортов

Сорт-опылитель Урожай зерна в среднем на одно растение, % Эффект опыления, %
Богатырь 100,0 (4,1 г) контроль
Днепровская 148,1 +48,1
Большевик 141,6 +41,6
Славянка 127,5 +27,5
Красноуфимская 216 97,0 –3,0
Ликово-Долинская 69,0 –31,0

Разница в урожае при опылении пыльцой разных сортов в полевом опыте достигала 5,2 ц с 1 га. Следовательно, правильный подбор сортов-опылителей культур-перекрестников обещает значительное повышение урожайности.

Удачно подобранный опылитель способствует получению высококачественного зерна (повышаются крупность зерна, жизненность, сила роста и улучшаются другие показатели). Эти факты нужно учитывать при организации семеноводства.

В процессах оплодотворения в полной мере проявляется избирательность. Селекционная практика установила, что при опылении недостаточным количеством пыльцы снижается оплодотворяемость и ухудшается качество семян. И более того, установлено, что при опылении пшеницы, хлопчатника, тыквы и других растений ограниченным количеством пыльцы образуются новые биотипы растений. Эти факторы требуют детального анализа, ибо в условиях, неблагоприятных для опыления, подобные явления могут быть и в семеноводческих посевах.

Изучение опыления в естественных условиях показало, что на рыльце всегда попадает смесь разной пыльцы – своего сорта, вида, чужих видов, и семейств. При этом некоторые сочетания видов пыльцы благоприятствуют оплодотворению, а некоторые могут ослабить потомство или даже сделают невозможным сам акт оплодотворения. Эти факты также заслуживают внимания в семеноводческой практике.

Из большого числа пыльцевых трубок, которые прорастают на рыльце, взаимодействуя между собой, тканями рыльца и столбика, в зародышевый мешок может войти только несколько, а чаще – одна. В зародышевом мешке цветков свеклы, гречихи и других растений было обнаружено по 2 пыльцевых трубки, а у подсолнечника даже более шести. Однако и в этих случаях непосредственно в оплодотворении участвовала только одна пыльцевая трубка, а овальные принимали косвенное участие – содержимое пыльцевых трубок стимулировало физиологическую активность полового процесса. В последнее время все чаще появляются сведения о «двухотцовости» в процессе оплодотворения, что говорит о возможности активного включения в половой процесс не одной пыльцевой трубки, а двух.

Пыльцевые зерна, попадая на рыльце пестика, прорастают. При этом через отверстие в экзине пыльцевого зерна выпячивается внутренняя оболочка – интина , которая, растягиваясь, образует оболочку пыльцевой трубки. В эту трубку переходит все содержимое пыльцевого зерна: вегетативное ядро, оба спермия (а иногда генеративная клетка, если процесс деления не прошел) и цитоплазма. В последней имеются запасные питательные вещества, которые служат источником энергии для растущей пыльцевой трубки. Кроме того, питательные вещества поступают из материнских тканей. Благодаря активным ферментативным процессам, происходящим в пыльцевой трубке, последняя растет очень энергично и в ней поддерживается сильный тургор.

Сам процесс роста и продвижения пыльцевой трубки по тканям столбика протекает по-разному: у одних растений трубка раздвигает клетки рыльца, а затем столбика, а у других она движется по специальному каналу, который тянется от рыльца до самой завязи. В конечном итоге пыльцевая трубка попадает в полость завязи, продолжает расти по направлению к пыльцевходу (микропиле) семяпочки и достигает верхушки зародышевого мешка (порогамия), хотя у некоторых растений возможно проникновение трубки и со стороны халазы .

При соприкосновении пыльцевой трубки с верхушкой зародышевого мешка и под ее давлением одна из синергид лопается, и ее содержимое изливается в зародышевый мешок. При этом давление в зародышевом мешке падает, кончик пыльцевой трубки, который был под значительным внутренним давлением, также лопается, и содержимое трубки выливается внутрь зародышевого мешка на место лопнувшей синергиды. В дальнейшем цитоплазма и вегетативное ядро разрушаются и всасываются окружающими клетками зародышевого мешка, оказывая влияние на биохимизм дальнейшего процесса. Поэтому указанные части пыльцевого зерна, хотя они, видимо, и не участвуют в дальнейшем процессе оплодотворения, иногда оказывают значительное влияние на дальнейшее потомство. Освобождающиеся спермии принимают участие в дальнейшем процессе оплодотворения: один из них внедряется внутрь яйцеклетки и сливается с ее ядром (рис. 1), а второй сливается с ядром центральной клетки зародышевого мешка, происходит так называемое двойное оплодотворение , свойственное всем покрытосемянным растениям. Открытие двойного оплодотворения сделано в 1898–1900 гг. С. Г. Навашиным.

После слияния двух гаплоидных гамет начинается развитие зародыша, то есть нового организма, следующего поколения. С этого момента начинается образование семени, и дальнейшее его развитие является предметом изучения семеноведения. Из оплодотворенной яйцеклетки развивается собственно зародыш, а из оплодотворенной центральной клетки зародышевого мешка – особая ткань, так называемый вторичный эндосперм , который присущ только покрытосемянным растениям. Он образуется в результате слияния трех ядер – двух женских и одного мужского, и потому ядро получается триплоидным.

Рис. 1. Двойное оплодотворение (продольный разрез зародышевого мешка кукурузы): А – в зародышевый мешок проникла пыльцевая трубка; Б – двойное оплодотворение; В – начало развития зародыша и эндосперма: 1 – яйцеклетка; 2 – синергида; 3 – полярные ядра; 4 – антиподы; 5 – микропиле; 6 – генеративные ядра (спермии); 7 – ядро пыльцевой трубки; 8 – пыльцевая трубка; 9 – клетки эндосперма

Вторичным эндосперм называется потому, что он возникает после оплодотворения в отличие от голосемянных, где эндосперм развивается из особой ткани без оплодотворения и называется там первичным.

Многие исследователи показали, что чужая пыльца (пыльца других видов), попадая на рыльце, часто оказывает существенное влияние на потомство. В этих случаях пыльцевая трубка также растет, но не сливается с яйцеклеткой, а содержимое ее изливается внутрь зародышевого мешка. Если содержимое чужеродной пыльцевой трубки очень далеко по своему химическому составу от содержимого пыльцевой трубки данного вида, то может возникнуть физиологическая несовместимость, которая вызовет омертвение зародышевого мешка, чаще же такая трубка не может развиваться на рыльце и погибает сама. Если же в содержимом чужой трубки нет вредных веществ, то они включаются в общий обмен веществ внутри семяпочки и оказывают значительное влияние на формирование наследственных свойств семян.

В процессе оплодотворения можно выделить три фазы:

1) прогамную , которая начинается с момента взаимодействия пыльцы, тканей рыльца и продолжается в тканях столбика и завязи до подхода пыльцевых трубок к семяпочкам;

2) гамогенеза – период взаимодействия пыльцевых трубок с тканями семяпочки (включая и двойное оплодотворение);

3) постгамную – период развития зародыша и всего семени, в котором еще продолжается взаимодействие с имеющимися в завязи пыльцевыми трубками и их содержимым.

Четкое представление о процессах, происходящих в каждой из названных фаз оплодотворения, позволяет глубже понимать процесс формирования биологических свойств развивающегося семени.

>>Оплодотворение у цветковых растений

Получая из внешней среды все необходимое для жизни, цветковые растения растут, цветут и образуют плоды с семенами. Чтобы завязался плод и развились семена, должно произойти опыление , а после него - оплодотворение.

Оплодотворением называют слияние двух половых клеток - гамет. У цветковых растений мужские гаметы - спермии - очень мелкие. Женские гаметы - яйцеклетки - гораздо крупнее спермиев.

При опылении пылинки, или пыльцевые зерна, попадают на рыльца. Внешне пыльцевые зерна разных растений очень разнообразны, у многих растений они имеют форму маленьких шариков. Каждое пыльцевое зерно одето оболочкой, поверхность которой редко гладкая; чаще она неровная и покрыта шипиками, бородавочками, выростами в виде сеточки 9 3 . Это помогает пыльцевым зернам удерживаться на теле насекомого-опылителя и на рыльце.

На поверхности рыльца выделяется липкая, удерживающая пыльцу жидкость. Здесь пылинка прорастает в длинную, очень тонкую пыльцевую трубку. Пыльцевая трубка сначала растет между клетками рыльца, затем - столбика и наконец врастает в полость завязи.

В полости завязи находятся семязачатки (семяпочки). Число семязачатков в завязях разных растений различно. У пшеницы , ячменя, ржи, вишни завязь содержит только один семязачаток, V хлопчатника - несколько десятков а у мака их число достигает нескольких тысяч.

По мере роста пыльцевой трубки по ней из пыльцевого зерна перемещаются две Клетки , имеющие крупные ядра . Это спермин. Они все время находятся близ растущего кончика пыльцевой трубки 94 .

Семязачатки развиваются на внутренних сторонах стенок завязи и, как все части растения, состоят из клеток. Каждый семязачаток одет покровом, в котором на вершине семязачатка.

В этой ткани, состоящей из мелких клеток с тонкими оболочками, развивается группа относительно крупных клеток. Среди них ближе к пыльцевходу находится яйцеклетка. Кончик пыльцевой трубки врастает в семязачаток. Яйцеклетка сливается с одним из спермиев. Происходит оплодотворение.

Второй спермин сливается с самой крупной из группы клеток семязачатка. Таким образом, у цветковых растений при оплодотворении происходит два слияния: первый спермий сливается с яйцеклеткой, второй - с крупной центральной клеткой. Этот процесс открыл в 1898 г. русский ботаник, академик С. Г. Навашин и назвал его двойным оплодотворением.

1. Что такое опыление?
2. Что называют оплодотворением?
3. Где находятся семязачатки?
4. Сколько семязачатков бывает в завязях разных растений?
5. Где находится яйцеклетка?
6. Как происходит оплодотворение у цветковых растений?

Корчагина В. А., Биология: Растения, бактерии, грибы, лишайники: Учеб. для 6 кл. сред. шк. - 24-е изд. - М.: Просвещение, 2003. - 256 с.:ил.

Календарно-тематическое планирование по биологии, видео по биологии онлайн , Биология в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Суть процесса оплодотворения

Определение 1

Оплодотворение – это процесс слияния мужской половой клетки (сперматозоида) с женской половой клеткой (яйцеклеткой), приводящий к образованию зиготы.

Суть и значение этого явления – объединение в одной клетке наследственной информации двух клеток (двух организмов).

Гаметы имеют гаплоидный набор хромосом. А в результате их слияния образуется диплоидная зигота, несущая половину информации от одного, а другую половину – от второго родителя. Это повышает степень разнообразии набора генов в генотипе и приводит к усилению изменчивости.

Оплодотворение у животных

У животных оплодотворение может быть как внешним, так и внутренним. Внешнее оплодотворение присуще видам, как правило населяющим водоемы. Оно происходит вне половой системы самки. Внешнее оплодотворение имеют многощетинковые черви, двустворчатые моллюски, речной рак, иглокожие, костные рыбы, земноводные и даже некоторые наземные животные – дождевые черви, некоторые паукообразные.

Процесс внешнего оплодотворения происходит довольно просто. Сначала самка откладывает яйцеклетки. Затем самец выпускает семенную жидкость. Сперматозоиды окружают яйцеклетки и проникают в них. Происходит оплодотворение. Недостатки этого способа заключаются в том, что значительная часть гамет (как яйцеклеток, так и сперматозоидов) гибнет в окружающей среде, гибнет, также, и большая часть оплодотворенных яйцеклеток (зигот). Именно поэтому виды, имеющие внешнее оплодотворение, образуют такое большое количество яйцеклеток (икринки). Это компенсирует потери.

Внутреннее оплодотворение происходит в половых путях самки. В ходе этого процесса происходит активация яйцеклетки в организме самки, проникновение сперматозоидов в половые пути самки, слияние сперматозоида и яйцеклетки. После слияния гамет оболочки яйцеклетки становятся непроницаемыми для других сперматозоидов. У некоторых видов животных в яйцеклетку может проникнуть несколько сперматозоидов. Но с ее ядром сливается только один из них. Остальные сперматозоиды дегенерируют.

Оплодотворение у растений

Для оплодотворения у водорослей и высших споровых растений необходимым условием является наличие влаги. Водная среда обеспечивает возможность передвижения подвижных сперматозоидов.

А вот семенные растения не зависят от наличия влаги. Перенос сперматозоидов к месту оплодотворения у семенных растений носит название опыления . В процессе опыления происходит перенос пыльцевых зерен с пыльника тычинки к месту оплодотворения (на семенной зачаток у голосеменных или на рыльце пестика у цветковых растений).

Замечание 1

Перенос пыльцы может осуществляться с помощью ветра или с помощью животных.

Двойное оплодотворение у покрытосеменных растений

Процесс оплодотворения у покрытосеменных очень сложный впервые его описал профессор С. Г. Навашин. Пыльца попадает на рыльце пестика. Затем начинает развиваться пыльцевая трубка. Она прорастает к завязи пестика и доходит до зародышевого мешка. По пыльцевой трубке в зародышевый мешок попадают два спермия. Один из них сливается с яйцеклеткой, а второй – с центральной клеткой зародышевого мешка. Это явление получило название двойного оплодотворения.

Но двойное оплодотворение – это фактически два совершенно различных процесса. В следствии оплодотворения яйцеклетки образовывается зародыш. А в результате слияния гаплоидного спермия с диплоидной центральной клеткой образовывается триплоидная клетка. Из нее формируется не организм, а особая ткань (эндосперм), которая будет обеспечивать зародыш питательными веществами. Именно благодаря двойному оплодотворению цветковые растения, по сравнению с голосеменными, могут быстрее накапливать питательные вещества в семени. Это ускоряет его созревание после оплодотворения, способствует выживанию покрытосеменных в современных условиях.