Масса протона. Заряд протона - базисная величина физики элементарных частиц Заряды протона и электрона равны

В этой статье вы найдете информацию о протоне, как элементарной частице, стоящей в основе мироздания наряду с другими её элементами, используемой в химии и физике. Будут определены свойства протона, его характеристика в химии и стабильность.

Что такое протон

Протон - это один из представителей элементарных частичек, который относят к барионам, э.ч. в которых фермионы сильно взаимодействуют, а сама частица состоит из 3-х кварков. Протон является стабильной частицей и имеет личный импульсный момент - спин ½. Физическое обозначение протона - p (или p +)

Протон - элементарная частица, принимающая участие в процессах термоядерного типа. Именно этот вид реакций по существу - главный источник энергии, генерируемый звездами во всей вселенной. Практически весь объем энергии, выделяемый Солнцем, существует только за счет объединения 4-х протонов в одно гелиевое ядро с образованием одного нейтрона из двух протонов.

Свойства присущие протону

Протон - это один из представителей барионов. Это факт. Заряд и масса протона - постоянные величины. Электрически протон заряжен +1, а его масса определена в различных единицах измерения и составляет в МэВ 938,272 0813(58), в килограммах протона вес заключен в цифрах 1,672 621 898(21)·10 −27 кг, в единицах атомных масс вес протона равен 1,007 276 466 879(91) а. е. м., а в соотношении с массой электрона, протон весит 1836,152 673 89(17) в соотношении с электроном.

Протон, определение которого уже давалось выше, с точки зрения физики, - это элементарная частичка, имеющая проекцию изоспина +½, а ядерная физика воспринимает эту частицу с противоположным знаком. Сам протон является нуклоном, а состоит из 3-х кварков (двух кварков u и одного кварка d).

Экспериментально исследовал структуру протона ядерщик-физик из Соединенных Штатов Америки - Роберт Хофштадтер. Для достижения этой цели физик сталкивал протоны с электронами высоких энергий, а за описание был удостоен Нобелевской премии в области физики.

В состав протона входит керн (тяжелая сердцевина), который заключает в себе около тридцати пяти процентов энергии электрического заряда протона и имеет довольно большую плотность. Оболочка, окружающая керн, относительно разряжена. Состоит оболочка в основном из виртуальных мезонов типа и p и несет в себе около пятидесяти процентов электрического потенциала протона и находится на расстоянии, равном приблизительно от 0.25*10 13 до 1,4*10 13 . Еще дальше, на расстоянии около 2,5*10 13 сантиметров оболочка состоит из и w виртуальных мезонов и содержит в себе приблизительно оставшиеся пятнадцать процентов электрического заряда протона.

Устойчивость и стабильность протона

В свободном состоянии протон не проявляет никаких признаков распада, что свидетельствует о его стабильности. Стабильное состояние протона, как легчайшего представителя барионов, обусловлено законом сохранения числа барионов. Не нарушая закон СБЧ, протоны способны распадаться на нейтрино, позитрон и другие, более легкие элементарные частицы.

Протон ядра атомов имеет возможность захватывать некоторые виды электронов, имеющие K, L, M атомные оболочки. Протон, совершив электронный захват, переходит в нейтрон и в результате выделяет нейтрино, а образовавшаяся в результате электронного захвата «дыра» заполняется за счет электронов свыше лежащих атомных слоев.

В системах неинерциального отсчета протоны должны приобретать ограниченное время жизни, которое возможно рассчитать, это обусловлено эффектом (излучение) Унру, который в квантовой теории поля предсказывает возможное созерцание теплового излучения в системе отсчета, которая ускоряется при условии отсутствия данного вида излучения. Таким образом, протон при наличии конечного времени своего существования может подвергаться бета-распаду в позитрон, нейтрон или нейтрино, несмотря на то, что сам процесс такого распада запрещен ЗСЭ.

Использование протонов в химии

Протон - это H атом, построенный из единого протона и не имеющий электрона, так что в химическом понимании, протон - это одно ядро атома H. Нейтрон на пару с протоном создают ядро атома. В ПТХЭ Дмитрия Ивановича Менделеева номер элемента указывает число протонов в атоме конкретного элемента, а определяется номер элемента атомным зарядом.

Катионы водорода представляют собой очень сильные электронные акцепторы. В химии протоны получают в основном из кислот органической и минеральной природы. Ионизация является способом получения протонов в газовых фазах.

Если вы знакомы со строением атома, то наверняка знаете, что атом любого элемента состоит из трех видов элементарных частиц: протонов, электронов, нейтронов. Протоны в сочетании с нейтронами образуют атомное ядро Так как заряд протона положительный, атомное ядро всегда заряжено положительно. атомного ядра компенсируется окружающим его облаком других элементарных частиц. Отрицательно заряженный электрон - это та составляющая атома, которая стабилизирует заряд протона. В зависимости от того, какое окружает атомное ядро, элемент может быть либо электрически нейтральным (в случае равенства количества протонов и электронов в атоме), либо иметь положительный или отрицательный заряд (в случае недостатка или избытка электронов, соответственно). Атом элемента, несущий на себе определенный заряд, именуется ионом.

Важно помнить, что именно числом протонов определяются свойства элементов и их положение в периодической таблице им. Д. И. Менделеева. Содержащиеся в атомном ядре нейтроны не имеют заряда. Из-за того что и протона соотносимы и практически равны друг другу, а масса электрона ничтожно мала по сравнению с ними (в 1836 раз меньше то число нейтронов в ядре атома играет очень важную роль, а именно: определяет стабильность системы и скорость ядер. Содержанием нейтронов определяется изотоп (разновидность) элемента.

Однако из-за несоответствия масс заряженных частиц протоны и электроны имеют разные удельные заряды (эта величина определяется отношением заряда элементарной частицы к ее массе). Вследствие этого удельный заряд протона равен 9,578756(27)·107 Кл/кг против -1,758820088(39)·1011 у электрона. Из-за высокого значения удельного заряда свободные протоны не могут существовать в жидких средах: они поддаются гидратации.

Масса и заряд протона - это конкретные величины, которые удалось установить еще в начале прошлого столетия. Кто же из ученых совершил это - одно из величайших - открытие двадцатого века? Еще в 1913 году Резерфорд, основываясь на том, что массы всех известных химических элементов больше массы атома водорода в целое число раз, предположил, что ядро атома водорода входит в ядро атома любого элемента. Несколько позднее Резерфорд провел опыт, в котором изучал взаимодействие ядер атома азота с альфа-частицами. В результате проведенного эксперимента из ядра атома вылетела частица, которую Резерфорд назвал «протон» (от греческого слова «протос» - первый) и предположил, что она и является ядром атома водорода. Предположение было доказано экспериментально в ходе повторного проведения этого научного опыта в камере Вильсона.

Тем же Резерфордом в 1920 году было высказана гипотеза о существовании в атомном ядре частицы, масса которой равна массе протона, но не несущей на себе никакого электрического заряда. Однако самому Резерфорду обнаружить эту частицу не удалось. Зато в 1932 году его ученик Чедвик экспериментально доказал существование в атомном ядре нейтрона - частицы, как и предсказывал Резерфорд, примерно равной по массе протону. Обнаружить нейтроны было сложнее, так как они не имеют электрического заряда и, соответственно, не вступают во взаимодействия с другими ядрами. Отсутствием заряда объясняется такое свойство нейтронов как очень высокая проникающая способность.

Протоны и нейтроны связаны в атомном ядре очень сильным взаимодействием. Сейчас физики сходятся на мысли, что две эти элементарные ядерные частицы очень похожи друг на друга. Так, они имеют равные спины, и ядерные силы действуют на них абсолютно одинаково. Единственное отличие - заряд протона положителен, нейтрон же вообще не имеет заряда. Но так как электрический заряд в ядерных взаимодействиях не имеет никакого значения, он может рассматриваться лишь как некая метка протона. Если же лишить протон электрического заряда, то он потеряет свою индивидуальность.


До начала 20 века ученые считали атом мельчайшей неделимой частицей вещества, но это оказалось не так. На самом деле, в центра атома располагается его ядро с заряженными положительно протонами и нейтральными нейтронами, вокруг ядра по орбиталям вращаются отрицательно заряженные электроны (данная модель атома была в 1911 году предложена Э. Резерфордом). Примечательно, что массы протонов и нейтронов практически равны, а вот масса электрона примерно в 2000 раз меньше.

Хоть атом содержит как положительно заряженные частицы, так и отрицательно, его заряд нейтрален, т.к., в атоме одинаковое количество протонов и электронов, а рзнозаряженные частицы нейтрализуют друг друга.

Позже ученые выяснили, что электроны и протоны обладают одинаковой величиной заряда, равной 1,6·10 -19 Кл (Кл - кулон, единица электрического заряда в системе СИ.

Никогда не задумывались над вопросом - какое кол-во электронов соответствует заряду в 1 Кл?

1/(1,6·10 -19) = 6,25·10 18 электронов

Электрическая сила

Электрические заряды воздействуют друг на друга, что проявляется в виде электрической силы .

Если какое-то тело имеет избыток электронов, оно будет обладать суммарным отрицательным электрическим зарядом, и наоборот - при дефиците электронов, тело будет иметь суммарный положительный заряд.

По аналогии с магнитными силами, когда одноименно заряженные полюса отталкиваются, а разноименно - притягиваются, электрические заряды ведут себя аналогичным образом. Однако, в физике недостаточно говорить просто о полюсности электрического заряда, важно его числовое значение.

Чтобы узнать величину силы, действующей между заряженными телами, необходимо знать не только величину зарядов, но и расстояние между ними. Ранее уже рассматривалась сила всемирного тяготения : F = (Gm 1 m 2)/R 2

  • m 1 , m 2 - массы тел;
  • R - расстояние между центрами тел;
  • G = 6,67·10 -11 Нм 2 /кг - универсальная гравитационная постоянная.

В результате проведенных лабораторных опытов, физики вывели аналогичную формулу для силы взаимодейтсвия электрических зарядов, которая получила название закон Кулона :

F = kq 1 q 2 /r 2

  • q 1 , q 2 - взаимодействующие заряды, измеренные в Кл;
  • r - расстояние между зарядами;
  • k - коэффициент пропорциональности (СИ : k=8,99·10 9 Нм 2 Кл 2 ; СГСЭ : k=1).
  • k=1/(4πε 0).
  • ε 0 ≈8,85·10 -12 Кл 2 Н -1 м -2 - электрическая постоянная.

Согласно закону Кулона, если два заряда имеют одинаковый знак, то действующая между ними сила F положительна (заряды отталкиваются друг от друга); если заряды имеют противоположные знаки, действующая сила отрицательна (заряды притягиваются друг к другу).

О том, насколько огромным по силе является заряд в 1 Кл можно судить, используя закон Кулона. Например, если предположить, что два заряда, каждый в 1Кл разнести на расстояние друг от друга в 10 метров, то они будут друг от друга отталкиваться с силой:

F = kq 1 q 2 /r 2 F = (8,99·10 9)·1·1/(10 2) = -8,99·10 7 Н

Это достаточно большая сила, примерно сопостовимая с массой в 5600 тонн.

Давайте теперь при помощи закона Кулона узнаем, с какой линейной скоростью вращается электрон в атоме водорода, считая, что он движется по круговой орбите.

Электростатическую силу, действующую на электрон, по закону Кулона можно приравнять к центростремительной силе:

F = kq 1 q 2 /r 2 = mv 2 /r

Учитывая тот факт, что масса электрона равна 9,1·10 -31 кг, а радиус его орбиты = 5,29·10 -11 м, получаем значение 8,22·10 -8 Н.

Теперь можно найти линейную скорость электрона:

8,22·10 -8 = (9,1·10 -31)v 2 /(5,29·10 -11) v = 2,19·10 6 м/с

Таким образом, электрон атома водорода вращается вокруг его центра со скоростью, равной примерно 7,88 млн. км/ч.

ОПРЕДЕЛЕНИЕ

Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода.

Ученые расходятся во мнении, какое и научных событий считать открытием протона. Важную роль в открытии протона сыграли:

  1. создание Э. Резерфордом планетарной модели атома;
  2. открытие изотопов Ф. Содди, Дж. Томсоном, Ф. Астоном;
  3. наблюдения за поведением ядер атомов водорода при выбивании их альфа-частицами из ядер азота Э. Резерфордом.

Первые фотографии следов протона были получены П. Блэкеттом в камере Вильсона при исследовании процессов искусственного превращения элементов. Блэкетт исследовал процесс захвата альфа частиц ядрами азота. В этом процессе испускался протон и ядро азота превращалось в изотоп кислорода.

Протоны совместно с нейтронами входят в состав ядер всех химических элементов. Количество протонов в ядре определяет атомный номер элемента в периодической системе Д.И. Менделеева.

Протон - это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как , тогда можно записать, что:

В настоящее время считают, что протон не является элементарной частицей. Он имеет сложную структуру и состоит из двух u- кварков и одного d - кварка. Электрический заряд u - кварка () положительный и он равен

Электрический заряд d - кварка () отрицательный и равен:

Кварки связывают обмен глюонами, которые являются квантами поля, они переносят сильное взаимодействие. То, что протоны имеют в своей структуре несколько точечных центров рассеяния подтверждено экспериментами по рассеянию электронов на протонах.

Протон имеет конечные размеры, о которых ученые до сих пор спорят. В настоящее время протон представляют как облако, которое имеет размытую границу. Такая граница состоит из постоянно возникающих и аннигилирующих виртуальных частиц. Но в большинстве простых задач протон, конечно можно считать точечным зарядом. Масса покоя протона () примерно равна:

Масса протона в 1836 раз больше, чем масса электрона.

Протоны принимают участие во всех фундаментальных взаимодействиях: сильные взаимодействия объединяют протоны и нейтроны в ядра, электроны и протоны при помощи электромагнитных взаимодействий соединяются в атомах. В качестве слабого взаимодействия можно привести, например, бета-распад нейтрона (n):

где p - протон; — электрон; — антинейтрино.

Распад протона получен пока еще не был. Это является одной из важных современных задач физики, так как это открытие стало бы существенным шагом в понимании единства сил природы.

Примеры решения задач

ПРИМЕР 1

Задание Ядра атома натрия бомбардируют протонами. Какова сила электростатического отталкивания протона от ядра атома, если протон находится на расстоянии м. Считайте, что заряд ядра атома натрия в 11 раз больше, чем заряд протона. Влияние электронной оболочки атома натрия можно не читывать.
Решение За основу решения задачи примем закон Кулона, который можно для нашей задачи (считая частицы точечными) записать следующим образом:

где F - сила электростатического взаимодействия заряженных частиц; Кл — заряд протона; - заряд ядра атома натрия; - диэлектрическая проницаемость вакуума; — электрическая постоянная. Используя имеющиеся у нас данные можно провести вычисления искомой силы отталкивания:

Ответ Н

ПРИМЕР 2

Задание Рассматривая простейшую модель атома водорода, считают, что электрон движется по круговой орбите вокруг протона (ядра атома водорода). Чему равна скорость движения электрона, если радиус его орбиты равен м?
Решение Рассмотрим силы (рис.1), которые действуют на движущийся по окружности электрон. Это сила притяжения со стороны протона. По закону Кулона мы запишем, что ее величина равна ():

где =— заряд электрона; - заряд протона; — электрическая постоянная. Сила притяжения меду электроном и протоном в любой точке орбиты электрона направлена от электрона к протону по радиусу окружности.

Некогда считалось, что самая мелкая единица строения любого вещества - это молекула. Затем, с изобретением более мощных микроскопов, человечество с удивлением открыло для себя понятие атома - составной частицы молекул. Казалось бы, куда меньше? Меж тем, еще позже выяснилось, что атом, в свою очередь, состоит из более мелких элементов.

В начала 20 века британский физик открыл наличие в атоме ядер - центральных структур, именно этот момент обозначил начало череды бесконечных открытий, касающихся устройства мельчайшего структурного элемента вещества.

На сегодняшний день, основываясь на ядерной модели и благодаря многочисленным исследованиям, известно, что атом состоит из ядра, которое окружено электронным облаком. В составе такого "облака" - электроны, или элементарные частицы с отрицательным зарядом. В состав ядра, наоборот, входят частицы с электрически положительным зарядом, получившие название протоны. Уже упомянутый выше британский физик смог наблюдать и впоследствии описать это явление. В 1919 году он проводил эксперимент, который заключался в том, что альфа-частицы выбивали ядра водорода из ядер других элементов. Таким образом, ему удалось выяснить и доказать, что протоны - не что иное, как ядро без единственного электрона. В современной физике протоны обозначаются с помощью символа p или p+ (что обозначает положительный заряд).

Протон в переводе с греческого означает "первый, основной" - элементарная частица, относящаяся к классу барионов, т.е. относительно тяжелых Представляет собой стабильную структуру, время его жизни составляет более 2,9 х 10(29) лет.

Строго говоря, кроме протона, содержит также и нейтроны, которые, исходя из названия, нейтрально заряжены. Оба этих элемента называют нуклонами.

Масса протона, в силу вполне очевидных обстоятельств, долгое время не могла быть измерена. Теперь же известно, что она составляет

mp=1,67262∙10-27 кг.

Именно таким образом выглядит и масса покоя протона.

Перейдем к рассмотрению специфических для разных областей физики пониманий массы протона.

Масса частицы в рамках ядерной физики чаще принимает иной вид, единицей измерения ее является а.е.м.

А.е.м. - атомная единица массы. Одна а.е.м. равняется 1/12 массы атома углерода, массовое число которого равняется 12. Отсюда 1 атомная единица массы равна 1,66057·10-27 кг.

Масса протона, следовательно, выглядит следующим образом:

mp = 1,007276 а. е. м.

Существует еще один способ выразить массу этой положительно заряженной частицы, используя иные единицы измерения. Для этого сначала нужно принять как аксиому эквивалентность массы и энергии E=mc2. Где с - а m - масса тела.

Масса протона в данной случае будет измеряться в мегаэлектронвольтах или МэВ. Такая единица измерения используется исключительно в ядерной и атомной физике и служит для измерения той энергии, что необходима для переноса частицы между двумя точками в С тем условием, что разница потенциалов между этими точками равна 1 Вольту.

Отсюда, учитывая, что 1 а.е.м. = 931,494829533852 МэВ, масса протона равна приблизительно

Такой вывод был получен на основании масс-спектроскопических измерений, и именно массу в том виде, в котором она приведена выше, принято также называть и энергией покоя протона .

Таким образом, ориентируясь на потребности эксперимента, масса мельчайшей частицы может быть выражена тремя разными значениями, в трех разных единицах измерения.

Кроме того, масса протона может быть выражена относительно массы электрона, который, как известно, гораздо "тяжелее" положительно заряженной частицы. Равняться масса при грубом подсчете и значительных погрешностях в этом случае будет 1836,152 672 относительно массы электрона.