Опыты расщепления ядра элемента. Деление ядра урана. Цепная реакция. Описание процесса. Капля, оболочка, кристалл

Расщепление ядра

Открытие изотопов стабильных элементов, уточнение измерений элементарного заряда были первыми достижениями послевоенной физики (1917-1918). В 1919 г. было сделано новое сенсационное открытие - искусственное расщепление ядра. Открытие это было сделано Резерфордом в Кембридже в Кавендишской лаборатории, которую он возглавил в том же, 1919 г.

Резерфорд изучал столкновение а -частиц с легкими атомами. Столкновения а-частицы с ядрами таких атомов должны их ускорять. Так, при ударе а-частицы о ядро водорода оно увеличивает свою скорость в 1,6 раза, и ядро отбирает у а-частицы 64% ее энергии. Такие ускоренные ядра легко обнаружить по сцинтилляциям, возникающим при ударе их об экран из сернистого цинка. Их действительно наблюдал Марсден в 1914 г.

Резерфорд продолжил опыты Марсдена, но, как он отмечал сам, эти опыты «выполнялись в весьма нерегулярные промежутки времени, поскольку позволяли повседневные занятия и работа, связанная с войной...» «Опыты даже совершенно прекращались на долгое время». Лишь после окончания войны опыты ставились регулярно, и их результаты были опубликованы в 1919 г. в четырех статьях под общим названием «Столкновения а-частиц с легкими атомами».

Прибор, применявшийся Резерфордом для изучения таких столкновений, представлял собой латунную камеру длиной 18 см, высотой 6 см и шириной 2 см. Источником а-частиц служил металлический диск, покрытый активным веществом. Диск помещался внутри камеры и мог устанавливаться на разных расстояниях от экрана из сернистого цинка, на котором наблюдались с помощью микроскопа сцинтилляции.

Камера могла заполняться различными газами (см. рис. 78).

Рис. 78. Масс-спектрограф Демпестера

При впускании сухого кислорода или углекислого газа число сцинтилляций уменьшалось вследствие поглощения а-частиц слоем газа. «Неожиданный эффект, однако, - писал Резер-форд в четвертой статье, - был обнаружен, когда в аппарат был введен сухой воздух. Вместо уменьшения число сцинтилляций увеличилось, и для поглощения, соответствующего приблизительно слою воздуха в 19 см, число их было приблизительно в 2 раза больше, чем то, которое наблюдалось при вакууме. Из этого опыта было ясно, что а-частицы при прохождении через воздух дают начало сцинтилляциям, соответствующим большим длинам пробега, яркость которых для глаза представлялась приблизительно равной яркости Н-сцинтилляций». Так как в кислороде и углекислом газе такого эффекта не наблюдалось, то с большой вероятностью можно было утверждать, что этот эффект обязан своим происхождением азоту.

Камеру заполняли чистым тщательно высушенным азотом. «В чистом азоте число сцинтилляций, соответствующих большому пробегу, было больше, чем в воздухе». Таким образом, «сцинтилляции при большом пробеге, наблюдаемые в воздухе, должны быть приписаны азоту».

Необходимо было, однако, показать, что длиннопробежные а-частицы, вызывающие сцинтилляции, «являются результатами столкновений а-частиц с атомами азота».

Схема первой установки Милликена

Путем многочисленных опытов Ре-зерфорд показал, что это действительно так и что в результате таких столкновений получаются частицы с максимальным пробегом 28 см, таким же, как у Н-атомов. «Из полученных до сих пор результатов, - писал Резерфорд, - трудно избежать заключения, что атомы с большим пробегом, возникающие при столкновении а-частиц с азотом, являются не атомами азота, но, по всей вероятности, атомами водорода или атомами с массой 2. Если это так, то мы должны заключить, что атом азота распадается вследствие громадных сил, развивающихся при столкновении с быстрой а-частицей, и что освобождающийся водородный атом образует составную часть атома».

Так было открыто явление расщепления ядер азота при ударах быстрых а-частиц и впервые высказана мысль, что ядра водорода представляют собой составную часть ядер атомов. Впоследствии Резерфорд предложил термин «протон» для этой составной части ядра. Резерфорд заканчивал свою статью словами: «Результаты в целом указывают на то, что если а-частицы или подобные им быстро движущиеся частицы с значительно большей энергией могли бы применяться для опытов, то можно было бы обнаружить разрушение ядерных структур многих легких атомов».

3 июня 1920 г. Резерфорд прочитал так называемую Бакерианскую лекцию под названием «Нуклеарное строение атома». Сообщая в этой лекции о результатах своих исследований по столкновению а-частиц с ядрами атомов и о расщеплении ядер азота, Резерфорд, обсуждая природу продуктов расщепления, сделал предположение о возможности существования ядер с массой 3 и 2 и ядер с массой ядра водорода, но с нулевым зарядом. При этом он исходил из гипотезы, высказанной впервые Марией Склодовской-Кюри, что в состав атомного ядра входят электроны.

Резерфорд пишет, что «ему кажется весьма правдоподобным, что один электрон может связать два Н-ядра и, возможно, даже и одно Н-ядро. Если справедливо первое предположение, то оно указывает на возможность существования атома с массой около 2 и с одним зарядом. Такое вещество нужно рассматривать как изотоп водорода. Второе предположение заключает в себе мысль о возможности существования атома с массой 1 и нуклеарным зарядом, равным нулю. Подобные образования представляются вполне возможными... Подобный атом обладал бы совершенно фантастическими свойствами. Его внешнее поле практически должно равняться нулю, за исключением областей, весьма близко прилегающих к ядру; вследствие этого он должен бы обладать способностью свободно проходить через материю. Существование подобного атома, вероятно, трудно было бы обнаружить спектроскопом, и его нельзя было бы удержать в закрытом сосуде. С другой стороны, он должен был легко входить в структуру атома и либо соединяться с его ядром, либо разгоняться интенсивным полем последнего, давая начало заряженному Н-атому или электрону или тому и другому».

Так была высказана гипотеза о существовании нейтрона и тяжелого изотопа водорода. Она была высказана на основе предложенной М. Склодовской-Кюри гипотезы, что ядра атомов состоят из ядер водорода (протонов) и электронов.

Это представление немедленно объяснило характеристические ядерные числа А и Z.

Однако такие характеристики ядра, как массовое число А и заряд Z, оказались недостаточными. Еще в 1924 г. до открытия спина В. Паули предположил, что ядро обладает магнитным моментом, влияющим на движение орбитальных электронов и тем самым создающим сверхтонкую структуру спектральных линий. Объяснение тонкой структуры спектров наличием обусловленных спином магнитных моментов ядер привело к разделению ядер на два типа. Ядра четного типа, обладающие целым спином, подчиняются статистике Бозе, ядра нечетного типа, обладающие полуцелым спином, подчиняются статистике ферми - Дирака. Поэтому по протонно-электронной теории ядра, состоящие из четного числа электронов и протонов, должны подчиняться статистике Бозе, из нечетного - статистике ферми - Дирака.

В 1930 г. выяснилось, что ядро азота подчиняется статистике Бозе, хотя оно согласно протонно-электронной теории строения ядра состоит из 21 частицы (14 протонов, 7 электронов). Этот факт получил в науке название азотной катастрофы.

В том же году, когда обнаружилась азотная катастрофа, были опубликованы результаты опытов Л. Мейтнер и Ортмана, подтвердивших результаты опытов Эллиса и Вустера 1927 г. Эти опыты показали, что полная энергия (3-лучей, измеряемая толстостенным микрокалориметром, меньше разности энергий исходного и конечного ядер, т. е. часть энергии, испускаемая ядром при р-распаде, исчезает. Получается вопиющее противоречие с законом сохранения энергии.

Решение проблемы азотной катастрофы и загадки р-спектров было дано на основе представления о существовании в природе нейтральных частиц - тяжелой, названной нейтроном, и легкой - названной по предложению Ферми нейтрино, т. е. маленьким нейтроном.

Из книги Приключения Мистера Томпкинса автора Гамов Георгий

Глава 12 Внутри ядра Следующая лекция, которую посетил мистер Томпкинс, была посвящена внутреннему строению ядра как центра, вокруг которого вращаются атомные электроны.- Леди и джентльмены, - начал профессор. - Все более углубляясь в строение материи, мы попытаемся

Из книги [лекция для школьников] автора Иванов Игорь Пьерович

Удивительный мир внутри атомного ядра

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Удивительный мир внутри атомного ядра

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Строение ядра Хотя вопрос об излучении?-частицы казался окончательно выясненным, поскольку закон сохранения электрического заряда выполнялся, физики продолжали свои исследования. Для них оставалось загадкой, как положительно заряженное ядро способно испускать

Из книги История атомной бомбы автора Мания Хуберт

Отталкивание внутри ядра К 1932 году стало ясно, что ядра состоят исключительно из протонов и нейтронов. От более ранних теорий, которые утверждали, что в ядре находятся электроны, отказались. Хотя это решило сразу много проблем, возник вопрос, которого не было раньше.До сих

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Притяжение внутри ядра Если при рассмотрении атомных ядер пренебречь гравитационными взаимодействиями и учитывать только электромагнитные, трудно объяснить существование ядра. Частицы, из которых оно состоит, не могли бы соединиться из-за колоссальных сил

Из книги Мария Кюри. Радиоактивность и элементы [Самый сокровенный секрет материи] автора Паес Адела Муньос

Открытие атомного ядра Рассмотрим несколько подробнее одно из фундаментальных открытий Резерфорда -открытие атомного ядра и планетарной модели атома. Мы видели, что уподобление атома планетной системе делалось еще в самом начале XX в. Но эту модель было трудно

Из книги автора

Протонно-нейтронная модель ядра 28 мая 1932 г. советский физик Д. Д. Иваненко опубликовал в «Nature» заметку, в которой высказал предположение, что нейтрон является наряду с протоном структурным элементом ядра. Он указал, что такая гипотеза решает проблему азотной катастрофы. В

Из книги автора

Внутри ядра Это небывалое путешествие пройдет для пассажиров Жюль-Вернова ядра далеко не так мирно и благополучно, как описано в романе. Не думайте, однако, что опасность грозит им во время путешествия от Земли до Луны. Ничуть! Если бы им удалось остаться живыми к моменту,

Из книги автора

К главе VIII 6. Давление внутри пушечного ядра Для читателей, которые пожелали бы проверить расчеты, упомянутые на стр. 65-й, приводим здесь эти несложные вычисления.Для расчетов нам придется пользоваться лишь двумя формулами ускоренного движения, именно:1) Скорость v в конце

Из книги автора

Из книги автора

4.2. Физические характеристики, строение ядра В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического

Из книги автора

РЕЗЕРФОРД И ОТКРЫТИЕ АТОМНОГО ЯДРА Что же происходило с тем, кто в молодости был хорошим игроком в регби, а затем раньше всех догадался, что атом может распадаться? Эрнест Резерфорд закончил свою американскую «ссылку» в январе 1907 года, через некоторое время после смерти

Часто говорят, что существуют два вида наук – большие науки и малые. Расщепление атома – большая наука. Она располагает гигантскими экспериментальными установками, колоссальными бюджетами и получает львиную долю Нобелевских премий.

Зачем физикам понадобилось расщеплять атом? Простой ответ – чтобы понять, как устроен атом, – содержит лишь долю истины, но есть и более общая причина. Говорить буквально о расщеплении атома не вполне правильно. В действительности речь идет о столкновении частиц высокой энергии. При столкновении субатомных частиц, движущихся с большими скоростями, происходит рождение нового мира взаимодействий и полей. Несущие огромную анергию осколки материи, разлетающиеся после столкновений, таят в себе секреты природы, которые от “сотворения мира” оставались погребенными в недрах атома.

Установки, на которых осуществляется столкновение частиц высоких энергий, – ускорители частиц – поражают своими размерами и стоимостью. Они достигают нескольких километров в поперечнике, и по сравнению с ними даже лаборатории, в которых изучаются столкновения частиц, кажутся крошечными. В других областях научных исследований оборудование размещается в лаборатории, в физике высоких энергий лаборатории пристраиваются к ускорителю. Недавно Европейский центр ядерных исследований (ЦЕРН), расположенный недалеко от Женевы, выделил несколько сотен миллионов долларов на строительство кольцевого ускорителя. Длина окружности сооружаемого для этой цели туннеля достигает 27 км. Ускоритель, получивший название ЛЭП (LEP, Large Electron-Positron ring-большое электрон– позитронное кольцо), предназначен для ускорения электронов и их античастиц (позитронов) до скоростей, всего лишь “на волосок” отличающихся от скорости света. Чтобы иметь представление о масштабах энергии, вообразим, что вместо электронов до таких скоростей разгоняется монетка достоинством в один пенни. В конце цикла ускорения она обладала бы энергией, достаточной для производства электроэнергии на сумму 1000 млн. долл.! Неудивительно, что подобные эксперименты принято относить к физике “высоких энергий”. Двигаясь внутри кольца навстречу друг другу, пучки электронов и позитронов испытывают лобовые столкновения, при которых электроны и позитроны аннигилируют, высвобождая энергию, достаточную для рождения десятков других частиц.

Что это за частицы? Некоторые из них – те самые “кирпичики”, из которых построены мы с вами: протоны и нейтроны, составляющие атомные ядра, и обращающиеся вокруг ядер электроны. Другие частицы обычно в окружающем нас веществе не встречаются: их век чрезвычайно короток, и по истечении его они распадаются на обычные частицы. Число разновидностей таких нестабильных короткоживущих частиц поразительно: их известно уже несколько сотен. Подобно звездам, нестабильные частицы слишком многочисленны, чтобы их различать “по именам”. Многие из них обозначены только греческими буквами, а некоторые – просто числами.

Важно иметь в виду, что все эти многочисленные и разнообразные нестабильные частицы отнюдь не являются в прямом смысле составными частями протонов, нейтронов или электронов. Сталкиваясь, электроны и позитроны высоких энергий вовсе не разлетаются на множество субатомных осколков. Даже при столкновениях протонов высоких энергий, заведомо состоящих из других объектов (кварков), они, как правило, не расщепляются на составные части в обычном смысле. То, что происходит при таких столкновениях, лучше рассматривать как непосредственное рождение новых частиц из энергии столкновения.

Лет двадцать назад физики были совершенно сбиты с толку многочисленностью и разнообразием новых субатомных частиц, которым, казалось, не будет конца. Невозможно было понять, для чего столько частиц. Может быть, элементарные частицы подобны обитателям зоопарка с их неявно выраженной принадлежностью к семействам, но без какой-либо четкой систематики. Или, возможно, как полагали некоторые оптимисты, элементарные частицы таят в себе ключ к Вселенной? Что такое наблюдаемые физиками частицы: малозначительные и случайные осколки материи или возникающие на наших глазах очертания смутно ощущаемого порядка, указывающего на существование богатой и сложной структуры субъядерного мира? Ныне в существовании такой структуры нет никаких сомнений. Микромиру присущ глубокий и рациональный порядок, и мы начинаем понимать, каково значение всех этих частиц.

В1939 г. Альберт Эйнштейн обратился к президенту Рузвельту с предложением приложить все усилия для того, чтобы раньше нацистов овла­деть энергией атомного распа­да. К тому времени эмигриро­вавший из фашистской Италии Энрико Ферми уже работал над этой проблемой в Колумбий­ском университете.

(В камере ускорителя Европейской лабора­тории физики элементарных частиц (CERN ), крупнейшего в Европе центре такого рода. Па­радоксально, но для исследования мельчайших частиц необходимы гигантские сооружения.)

Введение

В 1854 г. немец Генрих Гейслер . (1814-79) изобрел вакуумную стеклянную трубку с электродами, названную трубкой Гейслера, и ртутный насос, позволявший полу­чать высокий вакуум. Подсоединив к электродам трубки высоковольтную индукционную катушку, он получал на стекле напротив отрицательного элек­трода зеленое свечение. В 1876 г. не­мецкий физик Евгений Гольдштейн (1850-1931) предположил, что это све­чение вызвано лучами, испускаемыми катодом, и назвал эти лучи катодными.

(Новозеландский физик Эрнест Резерфорд (1871-1937) в Кавендишской лаборатории Кембриджского университета, которую он возглавил в 1919 году.)


Электроны

Английский ученый Уильям Крукс (1832-1919) усовершенствовал трубку Гейслера и показал возможность от­клонения катодных лучей магнитным полем. В 1897 г. другой английский ис­следователь, Джозеф Томсон, предпо­ложил, что лучи представляют собой отрицательно заряженные частицы, и определил их массу, которая оказалась примерно в 2000 раз меньше массы атома водорода. Он назвал эти частицы электронами, взяв название, пред­ложенное несколькими годами ранее ирландским физиком Джорджем Стоуни (1826-1911), который теоретичес­ки рассчитал величину их заряда. Так стала очевидной делимость ато­ма. Томсон предложил модель, в кото­рой электроны были вкраплены в атом, как изюминки в кексе. А вскоре были обнаружены и другие входящие в со­став атома частицы. С 1895 г. в Кавен­дишской лаборатории приступил к ра­боте Эрнест Резерфорд (1871-1937), который вместе с Томсоном занялся исследованием радиоактивности урана и обнаружил два вида частиц, испускае­мых атомами этого элемента. Частицы с зарядом и массой электрона он назвал бета-частицами, а другие, положитель­но заряженные, с массой, равной массе 4 атомов водорода, - альфа-частицами. Кроме того, атомы урана были источни­ком высокочастотного электромагнит­ного излучения - гамма-лучей.

(Отто Ган и Лизе Майтнер. В 1945 году Ган был интернирован союзниками в Англию и только там узнал о присуждении ему Нобелевской премии по химии за 1944 г. «за открытие расщепления тяжелых ядер».)


Протоны

В 1886 г. Гольдштейн обнаружил еще одно излучение, распространяющее­ся в направлении, противоположном катодным лучам, и названное им катодными лучами. Позже было дока­зано, что они состоят из ионов атомов. Резерфорд предложил назвать положительный ион водорода про тоном (от греческого proton - пер­вый), т. к. считал ядро водорода составной частью ядер атомов всех остальных элементов. Таким образом, в начале XX в. было установлено существование трех суб­атомных частиц: электрона, протона и альфа-частицы. В 1907 г. Резерфорд стал профессо­ром Манчестерского университета. Здесь, пытаясь выяснить строение ато­ма, он провел свои знаменитые экспе­рименты по рассеянию альфа-частиц. Исследуя прохождение этих частиц через тонкую металлическую фольгу, он пришел к выводу, что в центре ато­ма расположено небольшое плотное ядро, способное отражать альфа-час­тицы. Помощником Резерфорда в то время был молодой датчанин физик Нильс Бор (1885-1962), который в 1913 г., в соответствии с недавно созданной квантовой теорией, пред­ложил модель строения атома, извест­ную как модель Резерфорда-Бора . В ней электроны вращались вокруг яд­ра подобно планетам вокруг Солнца.

( Энрико Ферми (1901-54) в 1938 г. получил Нобелевскую премию за работы по облучению вещества нейтронами. В 1942 г. впервые осуществил самоподдерживающуюся цепную реакцию распада атомных ядер.)

Модели атомов

В этой первой модели ядро состояло из положительно заряженных прото­нов и некоторого числа электронов, частично нейтрализующих их заряд; кроме того, вокруг ядра двигались до­полнительные электроны, суммарный заряд которых был равен положитель­ному заряду ядра. Альфа-частицы , как и ядра атомов гелия, должны были со­стоять из 4 протонов и 2 электронов. Прошло более 10 лет, прежде чем эта модель подверглась пересмотру. В 1930 г. немец Вальтер Боте (1891-1957) объявил об открытии нового ви­да радиоактивного излучения, возни­кающего при облучении бериллия аль­фа-частицами. Англичанин Джеймс Чедвик (1891-1974) повторил эти экс­перименты и пришел к выводу, что дан­ное излучение состоит из частиц, рав­ных по массе протонам, но не имею­щих электрического заряда. Они были названы нейтронами. Затем немец Вернер Гейзенберг (1901-76) предложил модель атома, ядро которого состояло только из протонов и нейтронов. Группа исследователей с одним из первых ускорителей субатомных частиц - циклотроном (1932). Этот прибор предназначен для ускоре­ния частиц и последующей бомбардировки ими специальных мишеней.

(Группа исследователей с одним из первых ускорителей субатомных частиц - циклотроном (1932). Этот прибор предназначен для ускоре­ния частиц и последующей бомбардировки ими специальных мишеней.)

Расщепление атома

Физики всего мира сразу же увидели в нейтронах идеальный инструмент для воздействия на атомы - эти тяжелые, не имеющие заряда частицы легко проникали в атомные ядра. В 1934-36 Италии Энрико Ферми (1901-54) их помощи получил 37 радиоактивных изотопов различных элементов. Поглощая нейтрон, атомное ядро становилось неустойчивым, и излучало энергию в виде гамма-лучей. Ферми облучал нейтронами и уран, надеясь пре вратить его в новый элемент - «уран В этом же направлении работ в Берлине немец Отто Ган (1879-1 S и австрийка Лизе Майтнер (1878 - 1968). В 1938 г. Майтнер, спасаясь от нацистов, уехала в Стокгольм, а продолжил работу вместе с Фридрихом Штрассманом (1902-80). Вскоре Ган и Майтнер, продолжая эксперимент и, сверяя результаты по переписке, обнаружили образование в облученном нейтронами уране радиоактивного бария. Майтнер предположила, что я атом урана (атомный номер 92) рас щепляется на два ядра: бария (атомный номер элемента с номером 43 позже назвали технецием ). Так была открыта возможность расщепления атомного ядра. Было установлено также, что при разрушении ядра атома урана выдаются 2-3 нейтрона, каждый из которых, в свою очередь, способен инициировать распад атомов урана, вызвать цепную реакцию с выделением огромного количества энергии...

26 ноября 1894 г . В Санкт-Петербурге состоялось бракосочетание российского царя Николая II и немецкой принцессы Алисы Гессен-Дармштадтской. После венчания супруга императора приняла православную веру и получила имя Александра Федоровна.

27 ноября 1967 г . В московском кинотеатре «Мир» прошла премьера первого советского триллера «Вий». Главные роли сыграли Леонид Куравлев и Наталия Варлей. Съемки проходили в Ивано-Франковской области и поселке Седнев на Черниговщине.

28 ноября 1942 г. Советский Союз заключил соглашение с Францией о совместной борьбе с фашистской Германией в небе. Первая французская авиационная эскадрилья «Нормандия-Неман» состояла из 14 летчиков и 17 технических работников.

29 ноября 1812 г. Разгромлена армия Наполеона при переправе через реку Березина. Наполеон потерял около 35 тысяч человек. Потери русских войск, согласно надписи на 25-й стене галереи воинской славы Храма Христа Спасителя, составили 4 тысячи солдат. Почти 10 тысяч французов было взято в плен русским генералом Петром Витгенштейном.

1 декабря 1877 г. В селе Марковка Винницкой области родился Николай Леонтович, украинский композитор, хоровой дирижер, автор песен «Дударик», «Казака несут», «Мала мати одну дочку», «Щедрик» (песня известна на Западе как рождественская колядка колокольчиков («Carol of the Bells»).

1 декабря 1991 г . Состоялся всеукраинский референдум по вопросу о государственной независимости Украины. Первым президентом страны избран Леонид Кравчук.

2 декабря 1942 г . Физик Энрико Ферми с группой американских ученых из университета Чикаго осуществил контролируемую ядерную реакцию, впервые расщепив атом.

1 декабря 1992 года в международной базе данных зарегистрирован украинский домен UA

Среди бывших советских республик Украина стала первой страной, которая 1 декабря 1992 года получила национальный домен в интернете. Россия прошла регистрацию позже: домен RU появился 7 апреля 1994 года. В том же году свои домены получили Республика Беларусь - BY, Армения - AM и Казахстан - KZ. А первым национальным доменом в истории интернета стал американский US, он был зарегистрирован в марте 1985 года. Тогда же появились домены Великобритании - UK и Израиля - IL. Создание доменной системы позволяло по названию сайта сразу понимать, где он расположен.

В январе 1993 года на конференции украинских интернет-специалистов в поселке Славское Львовской области было предложено 27 доменов, созданных по географическому принципу, выбранному по коду телефонной нумерации. Украинские города и предприятия получили возможность создавать свои сайты в интернете, например, kiev.ua, crimea.ua, dnepropetrovsk.ua. Все обязанности по их администрированию по-прежнему выполнялись физическими лицами на общественных началах. В некоторых публичных доменах такая практика сохранилась до сих пор. Сейчас у каждого национального или географического домена есть свой администратор - компания или физическое лицо, определяющее правила регистрации. Со временем интернет породил свою версию языка. Доменное имя, которое заканчивается аббревиатурой COM, NET, EDU, означает сокращение общего понятия. К примеру, COM - коммерческий, NET - сетевой, EDU - образовательный. В нашей стране самым популярным является домен COM. Весной 2001 года с целью наведения порядка наконец-то было создано юридическое лицо ООО «Хостмастер», куда вошли администраторы UA и прочих украинских доменов. Физические лица, бывшие владельцы украинского домена UA, официально передали «Хостмастеру» часть полномочий.

Создать собственный сайт и получить домен сейчас может каждый. Первый этап, на котором регистрировать домены в зоне UA могли лишь владельцы торговых марок, уже закончился. С 2010 года доступна свободная регистрация домена на срок десять лет для любого, цена использования домена на один год составляет 90 гривен. Кстати, первым предсказал интернет писатель, философ и общественный деятель XIX века Владимир Одоевский. В романе «4338-й год», изданном в 1837 году, Одоевский писал: «Между знакомыми домами устроены магнетические телеграфы, посредством которых живущие на далеком расстоянии общаются друг с другом ». Сейчас, открывая сайт в интернете, не выходя из дома, каждый из нас может купить авиа- и железнодорожный билет, совершить покупки в супермаркете электроники, опубликовать свои произведения без посредников и даже найти спутника жизни на сайте знакомств. Двадцатилетние с трудом могут представить себе эпоху, когда за книгами шли в библиотеку, письма писали от руки, а новости узнавали только из телевизионных программ или печатных изданий.