Планеты нашей с вами солнечной системы. Планета Меркурий: интересные факты о бывшем спутнике Какое небесное тело крупнее луна или меркурий

Его диаметр составляет 0,38 диаметра Земли. Возможность Меркурия быть проводником-отражателем инфракрасного излучения, является главной причиной, по которой Меркурий выходит на первый план в Солнечной системе среди планет.


Меркурий, скорее всего, был открыт древнейшими пастушескими племенами, обитавшими в долинах Нила или Тигра и Евфрата . Нелегко им было догадаться, что сравнительно яркие вечерняя и утренняя звезды – одно и то же светило, поэтому у древних народов оно имело два имени: у египтян – Сет и Гор , у индийцев – Будда и Рогинея , у греков – Аполлон и Гермес (в римской мифологии богу Гермесу соответствовал Меркурий).


Меркурий и Луна


Из пяти планет, видимых невооруженным глазом, найти Меркурий бывает труднее всего, потому что он всегда на небе близко к Солнцу (не удаляется от него больше чем на 28°), поскольку орбита Меркурия ближе к Солнцу, чем орбита Земли. Обычно нужен бинокль, чтобы увидеть его. Наилучшими условиями для наблюдений являются весенний период для (утренняя видимость (за два часа до рассвета)) и осенний для (в первые два часа после заката), когда планета дальше всего от Солнца на небе. В эти моменты расположена таким образом, что высота Меркурия над горизонтом наибольшая. Подобно Венере и Луне , Меркурий меняет фазы: от узкого серпа до светлого кружка; это можно наблюдать с помощью небольшого телескопа. В телескоп с большим диаметром можно увидеть темные, неясные детали поверхности. Полный диск Меркурия виден лишь в моменты , когда он скрывается в лучах Солнца и имеет минимальный видимый диаметр. В период наибольшей яркости Меркурий достигает блеска звезды – 1-й величины.


Меркурий меньше некоторых спутников Юпитера и Сатурна, однако тяжелее их за счет железного ядра, которое по объему превосходит Луну и составляет 75% радиуса планеты


По форме Меркурий близок к шару с экваториальным радиусом (2440 ± 2) км, что примерно в 2,6 раза меньше, чем у Земли . Разность полуосей экваториального эллипса планеты составляет около 1 км; экваториальное и полярное сжатия незначительны. Отклонения геометрического центра планеты от центра масс - порядка полутора километров. Площадь поверхности Меркурия в 6,8 раз, а объем - в 17,8 раз меньше, чем у Земли. На фотографиях, полученных в 1974 году, видно, что Меркурий похож на Луну . Поверхность Меркурия, покрытая раздробленным веществом базальтового типа, довольно темная. Обилие мелких и крупных кратеров , иногда со светлыми лучами и с центральными горками, длинные широкие долины , борозды и разломы в коре, холмы и горные хребты - такова поверхность Меркурия.


Меркурианский кратер


Большинство из кратеров возникло около 3,5 миллиардов лет назад, когда планета подвергалась массированным бомбардировкам метеоритов . Диаметр кратеров варьируется от нескольких метров до более чем 1000 км. Дно некоторых кратеров залито затвердевшей , которая видна и на склонах гор. В ряде мест поверхности из застывших лавовых потоков проглядывают горные пики. Светлые лучи, расходящиеся от крупных кратеров, по-видимому, представляют собой, как и на Луне, цепочки тесно расположенных мелких кратеров и разбросанного вокруг них мелкозернистого вещества. Темные области поверхности планеты названы пустынями, и им присвоены имена героев древнегреческой мифологии: пустыня Афродиты, пустыня Гермеса и т.д. Семь обширных низменностей округлой формы, похожие на лунные моря , названы равнинами. Шесть из них имеют размеры от 600 до 980 км, а седьмая - до 1300 км и названа равниной Жары, так как расположена в районе поверхности планеты, наиболее сильно нагреваемой Солнцем.


Прохождение Меркурия по диску Солнца


Морей, как на Луне, на Меркурии оказалось мало, поверхность была полностью покрыта кратерами от метеоритов. Одна только область Меркурия может быть сравнена с Лунным морем - бассейн Калорис (835 миль в диаметре). Этот бассейн окружен горами и скалами, на самом деле является огромным ударным кратером, дно которого содержит множество интересных деталей. На Меркурии также встречаются уступы (эскарпы ) длиной в сотни километров и высотой до 1-2 км, вытянутые по меридианам. Предполагается, что они - результат деформации её в далеком геологическом прошлом. Высота гор на планете достигает четырёх километров.

У Меркурия обнаружена очень разреженная гелиевая , создаваемая "солнечным ветром". В среднем каждый гелия находится в его атмосфере около 200 дней, а затем покидает планету. Давление такой атмосферы у поверхности в 500 млрд. раз меньше, чем у поверхности Земли. Кроме гелия выявлено ничтожное количество водорода, следы аргона и неона. Поскольку планета очень близка к Солнцу, медленно вращается вокруг своей оси, и практически не имеет атмосферы, способной сохранять тепло ночью, температура ее поверхности колеблется от -180°C до +440°C. Но уже на глубине нескольких десятков сантиметров значительных колебаний температуры нет, что является следствием весьма низкой теплопроводности пород.

Teм нe мeнee, нaблюдaтeли нeoднoкpaтнo зaмeчaли y пoлюcoв Mepкypия oблaкa. Bпepвыe этoт фeнoмeн зaмeтил в тeлecкoп И. И. Шpeтep eщe в 1800 гoдy. Toгдa y южнoгo cepпa Mepкypия, нa eгo нoчнoй cтopoнe, нo опpeдeлeннo нaд кpaeм диcкa плaнeты, блecтeлo нeбoльшoe пятнышкo. Bыcoтa тoгo oбpaзoвaния, ocвeщeннoгo Coлнцeм, былa oцeнeнa в 20 км. Haблюдaтeль видeл явнo нe гopy. Beдь гopa пoявлялacь бы кaк тoчкa cнoвa и cнoвa, нo втopoй paз нeчтo пoдoбнoe былo зaмeчeнo лишь 140 лeт cпycтя. B июлe 1885 г. Дж. Бaллo видeл нeбoльшoe вытянyтoe oблaчкo, выдaвaвшeecя зa пpeдeлы Mepкypия. Oнo ocтaвaлocь 8 днeй, пocтeпeннo cливaяcь c плaнeтoй и нeмнoгo мeняя фopмy. Любoпытнo, чтo "пpитyплeния" зaмeчaли тoлькo y южнoгo пoлюca, нo никoгдa - y ceвepнoгo.

Близость Солнца обусловливает ощутимое влияние на Меркурий . Благодаря этой близости значительно и приливное воздействие Солнца на Меркурий, что должно приводить к возникновению над поверхностью планеты электрического поля, напряженность которого может быть примерно вдвое больше, чем у «поля ясной погоды» над поверхностью Земли, и отличается от последнего сравнительной стабильностью.


Меркурий и его магнитное поле


Из за скорости своего вращения и кратчайшей из всех больших планет орбиты, у Меркурия самый короткий год: со средней скоростью 48 км/сек он совершает полный оборот вокруг Солнца за 88 земных суток. За это время планета совершает всего полтора оборота вокруг своей оси. По этой причине длятся очень долго – 59 земных суток. Солнечные сутки Меркурия, которые длятся от одного восхода Солнца до другого, равняются 176 земным суткам, таким образом, год на Меркурии почти в 2 раза короче дня. Смена времен года на Меркурии происходит за счет большой разницы расстояний от Солнца в перигелии и афелии (у Земли за счет наклона оси). Фотографирование поверхности Меркурия американским космическим аппаратом "Маринер-10" в 1974-1975 гг. позволило составить карту западного полушария меркурия и обнаружить магнитное поле . Его напряженность составляет примерно 1% от напряженности земного магнитного поля.

Ceнcaциoннoe oткpытиe y пoлюcoв Mepкypия былo cдeлaнo aмepикaнcкими yчeными в 1991 гoдy. Kaк извecтнo, нa caмoй близкoй к Coлнцy плaнeтe пoвepxнocть pacкaляeтcя дo тeмпepaтypы +430°C. Ho изoбpaжeния диcкa Mepкypия, пoлyчeнныe c пoмoщью нaзeмнoгo paдapa, пoкaзaли ocлeпитeльнo яpкиe пoляpныe шaпки, пo-видимoмy, из вoдянoгo льдa. Bcкope cпeциaлиcтaм yдaлocь пoвыcить paзpeшeниe изoбpaжeний дo 15 км, и шaпки pacпaлиcь нa 2 дecяткa пятeн. Cpaвнeниe c фoтoгpaфиями, пoлyчeнными "Mapинepoм-10" пoзвoлилo oтoждecтвить тe пятнa c кpyпными пoляpными кpaтepaми
Mepкypия, днo кoтopый никoгдa нe ocвeщaeтcя coлнeчными лyчaми. Пo oцeнкaм тeopeтикoв, тaм, в вeчнoм мpaкe вce peмя цapит жecтoкий мopoз -213°C. Этoгo впoлнe дocтaтoчнo для coxpaннocти льдa в тeчeнии миллиapдoв лeт.

Предложено несколько моделей внутреннего строения Меркурия. Согласно наиболее распространенной, в начальный период своей истории планета испытала сильное внутреннее разогревание, за которым последовала одна или несколько эпох интенсивного вулканизма. 80 % массы Меркурия сосредоточено в его железо-никелевом ядре, диаметром 3600 км. и (толщиной около 600 км) состоят из кремниевых пород. Радиоизлучение планеты невелико.

Чьи инфракрасные датчики обнаружили спектр, характерный для испарившейся породы, а также смеси расплавленной и вновь застывшей лавы. Проведенный астрономами анализ показал, что это, видимо, стало результатом крупной космической катастрофы, мощного столкновения двух тел, одно из которых было размерами, по меньшей мере, с Луну (масса Луны — ок. 74 000 000 000 млрд т), а другое — с Меркурий (его масса — ок. 330 000 000 000 млрд т). Несколько тысяч лет назад они врезались друг в друга на большой скорости. Меньшее тело в результате было полностью уничтожено, основная часть его массы испарилась или заполнила окружающее пространство быстро остывающими брызгами раскаленной лавы. Примерно так.

Наблюдение затронуло систему звезды HD 172555, весьма молодой, всего 12 млн лет от роду (Солнцу 4,5 млрд лет), находящейся в каких-то 100 световых годах от Земли, в южном созвездии Павлин . С помощью бортовой аппаратуры телескопа Spitzer получив спектральные данные, ученые определили на них линии, характерные для аморфных кремнийсодержащих минералов — иначе говоря, плавленого стекла, а также газообразного моноксида кремния (то, как анализируются спектры, мы популярно объясняли в заметке «Рассматриваем картинку »). Оценив массу этих веществ, удалось показать, что в сумме она более чем вдвое превысила массу Луны. А чтобы расплавить и испарить столько породы, энергия столкновения должна была быть просто ужасной. По расчетам ученых, тела должны были врезаться друг в друга на скорости более 10 км/с.

«Для того, чтобы каменистая порода расплавилась и испарилась, скорость столкновения должна быть очень велика, — говорит астроном Кэри Лиссэ (Carey Lisse), один из авторов работы, раскрывшей подробности этого события, — Подобные явления происходят действительно редко и проходят быстро, но играют критическую роль в процессе формирования планет, подобных нашей Земле, и спутников, подобных Луне. Нам по‑настоящему повезло заметить одно из них».

По мнению астронома и его коллег, это столкновение во многом напоминало то, которое некогда — около 4 млрд лет назад — привело к появлению у нашей планеты ее единственного естественного спутника (об этой популярной сегодня теории «ударного» происхождения Луны лучше всего прочесть в статье «Прекрасная Селена »). Считается, что тогда в Землю врезалось тело размерами примерно с Марс. Удар был настолько сильный, что поверхность нашей (еще молодой) планеты расплавилась, а выброшенные в космос фрагменты усеяли все околоземное пространство. За долгие годы они притянулись, образовав единое тело — Луну. То, что сегодня наблюдается в той звездной системе, близко к той катастрофе и по характеру, и по масштабам. Возможно, через миллионы лет и там появится новая луна.

Ранняя история Солнечной системы была полна подобными катастрофами. К примеру, ученые полагают, что именно они привели к тому, что Меркурий потерял свою внешнюю оболочку, Уран вращается, «лежа на боку», а Венера — в обратном направлении. Все это — издержки процесса роста, совсем как «взбрыки» в подростковом возрасте.

В разделе на вопрос Чем отличается поверхность Меркурия от Луны? заданный автором Resist лучший ответ это Меркурий во многом сходен с Луной: его поверхность изрыта кратерами и очень стара; там отсутствуют тектонические плиты. С другой стороны Меркурий значительно плотнее Луны (5.43 г/см3 против 3.34 г/см3 у Луны) . Меркурий второе по плотности большое тело в солнечной системе после Земли. Высокая плотность Земли частично объясняется гравитационным сжатием, если бы не это, то Меркурий был бы плотнее Земли. Данный факт указывает на то, что плотное железное ядро у Меркурия больше Земного, и возможно составляет большую часть планеты. Из-за этого Меркурий имеет относительно тонкую силикатную мантию и кору. Основное место внутри Меркурия занимает большое железное ядро радиусом 1800-1900 км. Толщина поверхностных силикатных оболочек (аналогичные Земной мантии и коре) составляет 500-600 км. По крайней мере часть ядра вероятно расплавлена. Меркурий обладает очень тонкой атмосферой, состоящей из атомов выбитых из его поверхности солнечным ветром. Поскольку Меркурий очень горячий, эти атомы быстро уходят в космическое пространство. Таким образом, в отличие от Земли и Венеры, чьи атмосферы устойчивы, атмосфера Меркурия постоянно обновляется. На поверхности Меркурия видны огромные откосы, некоторые до сотен километров длиной и более трех километров высотой. Некоторые из этих обрывов пересекают кратеры и другие детали рельефа таким оьразом, что позволяет сделать вывод о их происхождении в результате сжатия. Можно считать, что площадь поверхности Меркурия сократилась на 0.1% (или, что радиус планеты уменьшилмя на 1 км) . Одной из самых больших деталей поверхности Меркурия является Caloris Basin (справа) . Он около 1300 км в диаметре и подобен большим бассейнам (морям) на Луне. Как и моря на Луне он образовался в результате сильного столкновения на заре образования солнечной системы. Это же столкновение, по-видимому, ответственно за необычный ландшафт строго на противоположной стороне планеты

Планеты Солнечной системы

Согласно официальной позиции Международного астрономического союза (МАС), организации присваивающей имена астрономическим объектам, планет всего 8.

Плутон был исключен из разряда планет в 2006 году. т.к. в поясе Койпера находятся объекты которые больше/либо равны по размерам с Плутоном. Поэтому, даже если его принимать его за полноценное небесное тело, то тогда необходимо к этой категории присоединить Эриду, у которой с Плутоном почти одинаковый размер.

По определению MAC, есть 8 известных планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Все планеты делят на две категории в зависимости от их физических характеристик: земной группы и газовые гиганты.

Схематическое изображение расположения планет

Планеты земного типа

Меркурий

Самая маленькая планета Солнечной системы имеет радиус всего 2440 км. Период обращения вокруг Солнца, для простоты понимания приравненный к земному году, составляет 88 дней, при этом оборот вокруг собственной оси Меркурий успевает совершить всего полтора раза. Таким образом, его сутки длятся приблизительно 59 земных дней. Долгое время считалось, что эта планета все время повёрнута к Солнцу одной и той же стороной, поскольку периоды его видимости с Земли повторялись с периодичностью, примерно равной четырем Меркурианским суткам. Это заблуждение было развеяно с появлением возможности применять радиолокационные исследования и вести постоянные наблюдения с помощью космических станций. Орбита Меркурия – одна из самых нестабильных, меняется не только скорость перемещения и его удалённость от Солнца, но и само положение. Любой интересующийся может наблюдать этот эффект.

Меркурий в цвете, снимок космического аппарата MESSENGER

Близость к Солнцу стала причиной того, что Меркурий подвержен самым большим перепадам температуры среди планет нашей системы. Средняя дневная температура составляет около 350 градусов по Цельсию, а ночная -170 °C. В атмосфере выявлены натрий, кислород, гелий, калий, водород и аргон. Существует теория, что он был ранее спутником Венеры, но пока это остается недоказанным. Собственные спутники у него отсутствуют.

Венера

Вторая от Солнца планета, атмосфера которой почти полностью состоит из углекислого газа. Её часто называют Утренней звездой и Вечерней звездой, потому что она первой из звёзд становится видна после заката, так же как и перед рассветом продолжает быть видимой и тогда, когда все остальные звёзды скрылись из поля зрения. Процент диоксида углерода составляет в атмосфере 96%, азота в ней сравнительно немного – почти 4% и в совсем незначительном количестве присутствует водяной пар и кислород.

Венера в УФ спектре

Подобная атмосфера создает эффект парника, температура на поверхности из-за этого даже выше, чем у Меркурия и достигает 475 °C. Считается самой неторопливой, венерианские сутки длятся 243 земных дня, что почти равно году на Венере – 225 земных дней. Многие называют её сестрой Земли из-за массы и радиуса, значения которых очень близки к земным показателям. Радиус Венеры составляет 6052 км (0,85% земного). Спутников, как и у Меркурия, нет.

Третья планета от Солнца и единственная в нашей системе, где на поверхности есть жидкая вода, без которой не смогла бы развиться жизнь на планете. По крайней мере, жизнь в том виде, в котором мы её знаем. Радиус Земли равен 6371 км и, в отличие от остальных небесных тел нашей системы, более 70% её поверхности покрыто водой. Остальное пространство занимают материки. Ещё одной особенностью Земли являются тектонические плиты, скрытые под мантией планеты. При этом они способны перемещаться, хоть и с очень малой скоростью, что со временем вызывает изменение ландшафта. Скорость перемещения планеты по ней – 29-30 км/сек.

Наша планета из космоса

Один оборот вокруг своей оси занимает почти 24 часа, причем полное прохождение по орбите длится 365 суток, что намного больше в сравнении с ближайшими планетами-соседями. Земные сутки и год также приняты как эталон, но сделано это лишь для удобства восприятия временных отрезков на остальных планетах. У Земли имеется один естественный спутник – Луна.

Марс

Четвёртая планета от Солнца, известная своей разрежённой атмосферой. Начиная с 1960 года, Марс активно исследуется учеными нескольких стран, включая СССР и США. Не все программы исследования были успешными, но найденная на некоторых участках вода позволяет предположить, что примитивная жизнь на Марсе существует, или существовала в прошлом.

Яркость этой планеты позволяет видеть его с Земли без всяких приборов. Причем раз в 15-17 лет, во время Противостояния, он становится самым ярким объектом на небе, затмевая собой даже Юпитер и Венеру.

Радиус почти вдвое меньше земного и составляет 3390 км, зато год значительно дольше – 687 суток. Спутников у него 2 — Фобос и Деймос.

Наглядная модель Солнечной системы

Внимание ! Анимация работает только в браузерах поддерживающих стандарт -webkit (Google Chrome, Opera или Safari).

  • Солнце

    Солнце является звездой, которая представляет собой горячий шар из раскаленных газов в центре нашей Солнечной системы. Его влияние простирается далеко за пределы орбит Нептуна и Плутона. Без Солнца и его интенсивной энергии и тепла, не было бы жизни на Земле. Существуют миллиарды звезд, как наше Солнце, разбросанных по галактике Млечный Путь.

  • Меркурий

    Выжженный Солнцем Меркурий лишь немного больше, чем спутник Земли Луна. Подобно Луне, Меркурий практически лишен атмосферы и не может сгладить следы воздействия от падения метеоритов, поэтому он как и Луна покрыт кратерами. Дневная сторона Меркурия очень сильно нагревается на Солнце, а на ночной стороне температура падает на сотни градусов ниже нуля. В кратерах Меркурия, которые расположены на полюсах, существует лед. Меркурий совершает один оборот вокруг Солнца за 88 дней.

  • Венера

    Венера это мир чудовищной жары (еще больше чем на Меркурии) и вулканической активности. Аналогичная по структуре и размеру Земле, Венера покрыта толстой и токсичной атмосферой, которая создает сильный парниковый эффект. Этот выжженной мир достаточно горячий, чтобы расплавить свинец. Радарные снимки сквозь могучую атмосферу выявили вулканы и деформированные горы. Венера вращается в противоположном направлении, от вращения большинства планет.

  • Земля — планета океан. Наш дом, с его обилием воды и жизни делает его уникальным в нашей Солнечной системе. Другие планеты, в том числе несколько лун, также имеют залежи льда, атмосферу, времена года и даже погоду, но только на Земле все эти компоненты собрались вместе таким образом, что стало возможным существование жизнь.

  • Марс

    Хотя детали поверхности Марса трудно увидеть с Земли, наблюдения в телескоп показывают, что на Марсе существуют сезоны и белые пятна на полюсах. В течение многих десятилетий, люди полагали, что яркие и темные области на Марсе это пятна растительности и что Марс может быть подходящим местом для жизни, и что вода существует в полярных шапках. Когда космический аппарат Маринер-4, прилетел у Марсу в 1965 году, многие из ученых были потрясены, увидев фотографии мрачной планеты покрытой кратерами. Марс оказался мертвой планетой. Более поздние миссии, однако, показали, что Марс хранит множество тайн, которые еще предстоит решить.

  • Юпитер

    Юпитер — самая массивная планета в нашей Солнечной системе, имеет четыре больших спутника и множество небольших лун. Юпитер образует своего рода миниатюрную Солнечную систему. Чтобы превратится в полноценную звезду, Юпитеру нужно было стать в 80 раз массивнее.

  • Сатурн

    Сатурн — самая дальняя из пяти планет, которые были известны до изобретения телескопа. Подобно Юпитеру, Сатурн состоит в основном из водорода и гелия. Его объем в 755 раз больше, чем у Земли. Ветры в его атмосфере достигают скорости 500 метров в секунду. Эти быстрые ветра в сочетании с теплом, поднимающимся из недр планеты, вызывают появление желтых и золотистых полос, которые мы видим в атмосфере.

  • Уран

    Первая планета найденная с помощью телескопа, Уран был открыт в 1781 году астрономом Уильямом Гершелем. Седьмая планета от Солнца настолько далека, что один оборот вокруг Солнца занимает 84 года.

  • Нептун

    Почти в 4,5 млрд. километрах от Солнца вращается далекий Нептун. На один оборот вокруг Солнца у него уходит 165 лет. Он невидим невооруженным глазом из-за его огромного расстояния от Земли. Интересно, что его необычная эллиптическая орбита, пересекается с орбитой карликовой планеты Плутона из-за чего Плутон находится внутри орбиты Нептуна порядка 20 лет из 248 за которые совершает один оборот вокруг Солнца.

  • Плутон

    Крошечный, холодный и невероятно далекий Плутон был открыт в 1930 году и долго считался девятой планетой. Но после открытий подобных Плутону миров, которые находились еще дальше, Плутон был переведен в категорию карликовых планет в 2006 году.

Планеты — гиганты

Существуют четыре газовых гиганта, располагающихся за орбитой Марса: Юпитер, Сатурн, Уран, Нептун. Они находятся во внешней Солнечной системе. Отличаются своей массивностью и газовым составом.

Планеты солнечной системы, масштаб не соблюден

Юпитер

Пятая по счёту от Солнца и крупнейшая планета нашей системы. Радиус её – 69912 км, она в 19 раз больше Земли и всего в 10 раз меньше Солнца. Год на Юпитере не самый долгий в солнечной системе, длится 4333 земных суток (неполных 12 лет). Его же собственные сутки имеют продолжительность около 10 земных часов. Точный состав поверхности планеты пока определить не удалось, однако известно, что криптон, аргон и ксенон имеются на Юпитере в гораздо больших количествах, чем на Солнце.

Существует мнение, что один из четырёх газовых гигантов на самом деле – несостоявшаяся звезда. В пользу этой теории говорит и самое большое количество спутников, которых у Юпитера много – целых 67. Чтобы представить себе их поведение на орбите планеты, нужна достаточно точная и чёткая модель солнечной системы. Самые крупные из них – Каллисто, Ганимед, Ио и Европа. При этом Ганимед является крупнейшим спутником планет во всей солнечной системе, радиус его составляет 2634 км, что на 8% превышает размер Меркурия, самой маленькой планеты нашей системы. Ио отличается тем, что является одним из трёх имеющих атмосферу спутников.

Сатурн

Вторая по размерам планета и шестая по счёту в Солнечной системе. В сравнении с остальными планетами, наиболее схожа с Солнцем составом химических элементов. Радиус поверхности равен 57350 км, год составляет 10 759 суток (почти 30 земных лет). Сутки здесь длятся немногим дольше, чем на Юпитере – 10,5 земных часов. Количеством спутников он ненамного отстал от своего соседа – 62 против 67. Самым крупным спутником Сатурна является Титан, так же, как и Ио, отличающийся наличием атмосферы. Немного меньше него по размеру, но от этого не менее известные – Энцелад, Рея, Диона, Тефия, Япет и Мимас. Именно эти спутники являются объектами для наиболее частого наблюдения, и потому можно сказать, что они наиболее изучены в сравнении с остальными.

Долгое время кольца на Сатурне считались уникальным явлением, присущим только ему. Лишь недавно было установлено, что кольца имеются у всех газовых гигантов, но у остальных они не настолько явно видны. Их происхождение до сих пор не установлено, хотя существует несколько гипотез о том, как они появились. Кроме того, совсем недавно было обнаружено, что неким подобием колец обладает и Рея, один из спутников шестой планеты.

Меркурий принадлежит к группе из четырех планет земного типа, расположенных близко к Солнцу. Он находится на самом коротком расстоянии от светила и недалеко от Земли. Увидеть планету непросто: она никогда не уходит от Солнца на угол больше чем на 28°, а обычно меньше. Это удаление называется элонгацией. Но и в наибольшей элонгации (18-28°) Меркурий можно наблюдать только на фоне светлого сумеречного неба в течение короткого времени на восходе (рис. справа) или после захода Солнца. Минимальное расстояние до Меркурия всего 80 млн км, но наблюдать его в это время не удается не только из-за яркого света Солнца, но и потому, что к Земле в этот период обращена его ночная сторона. «Счастлив астроном, Меркурий увидевший», - значится в средневековых астрономических наставлениях. Тем не менее заметить планету нетрудно, если только помнить короткие календарные периоды ее видимости, знать, где ее искать, и учитывать, что видна она очень недолго, теоретически не более 1,5 ч, а практически намного меньше. Условия видимости повторяются несколько раз в год. С помощью телескопа Меркурий можно увидеть только в дневное время, причем распознать какие-либо детали на нем практически не удается. Угол, под которым планета видна в квадратуре (половина диска), составляет в среднем 7,3 угл. с. «Хорошим» в наземных обсерваториях считается телескоп с разрешением около одной угловой секунды (т.е. его способность разделить точки изображения, разделенные углом в 1 с). Поэтому на фотографических изображениях Меркурий всегда остается небольшим мутным пятнышком. Делу могли бы помочь автоматические орбитальные телескопы, например «Хаббл» (HST), но, по мнению администрации телескопа, если возникнет ошибка в движении инструмента, мощное излучение Солнца может попасть на уникальные приборы и их испортить. Кстати, то же касается наземных астрономических инструментов для работы с Меркурием.

Рельеф Меркурия

Несмотря на то что снимки поверхности Меркурия напоминают «материковые» области Луны, «морей» лунного типа (лавовых), которые так привычны на диске нашего спутника, на данной стороне планеты не оказалось. Луна и Меркурий показаны в одинаковом масштабе на рис вверху, где малоконтрастные детали последнего контрастируют с пятнистой поверхностью Луны.

Поверхность рассматриваемой планеты имеет особенности, присущие только Меркурию. Выделяются несколько характерных типов рельефа. Наиболее древний, насыщенный, - равнина, покрытая бесчисленным количеством перекрывающихся метеоритных кратеров, где удар каждого следующего метеоритного тела приходился на участок, уже многократно изрытый кратерами. Такая поверхность показана на рис., где размер еще различимых деталей составляет 300 м. Солнце светит слева и находится довольно низко над горизонтом. Вся поверхность покрыта сплошной сетью кратеров и кажется не отличимой от материковых районов Луны. Почти все они образовались от падения крупных метеоритных тел в период формирования планеты, около 4 млрд лет назад. Сначала выпадали протопланетные тела (планетезимали) и метеориты самых различных размеров, а потом все более мелкие фрагменты, следами которых покрыто все дно кратера справа. Вместе с тем крупные метеоритные тела порой врезались в поверхность даже на поздней стадии. Так образовался хорошо сохранившийся кратер диаметром 25 км правее и ниже центра снимка. Следов более поздних мелких кратеров его вал не имеет.

Другая отметка последовательности событий видна в левом нижнем углу снимка, где расположен большой шестидесятикилометровый кратер с сильно разрушенным валом. На его дне заметны следы излияния лавы, образовавшей огромный поток, который двигался слева и затвердел, пройдя больше половины диаметра кратера. Извержение происходило уже после выпадения основного объема метеоритного вещества. Вместе с тем редкие и сравнительно мелкие тела выпадали на поверхность лавового натека и после его образования. С большей или меньшей плотностью ударные образования покрывают значительную часть известной ныне поверхности Меркурия. События, оставившие на ней след, в основном происходили 3,9х109 лет назад. Точно так же выглядит поверхность Луны, возраст образцов которой установлен непосредственно.

Кинетическая энергия сталкивавшихся с поверхностью Меркурия протопланетных тел была очень велика. Каждый их удар сопровождался мощным взрывом, энергия которого была заметно выше, чем у обычной взрывчатки с той же массой, что и у метеорита. Интересно, что у лунных кратеров значительно большие диаметры, чем у подобных на Меркурии, образованные такими же по массе метеороидами. Поскольку ускорение свободного падения на Меркурии (3,72 м/c2) выше, чем на Луне (1,62 м/c2), выброшенный при ударах метеоритов материал выпадал не так далеко от центра, как на Луне: при одинаковой энергии взрыва площадь, которую покрывает выброс на Меркурии, в 5 раз меньше, чем на Луне.

Бескратерные равнины или обширные промежутки между кратерами характерны только для Меркурия. Тем не менее, сходство внешнего вида и реголита Луны и Меркурия поразительно. Некоторые меркурианские кратеры имеют систему «лучей», простирающихся на большое расстояние. На Луне, где много таких кратеров, их протяженность гораздо больше из-за меньшего ускорения свободного падения. Например, лучи кратера Тихо уходят за край видимого диска Луны. Известно, что яркость лучей заметно усиливается к полнолунию, а затем ослабевает, что объясняется высокой пористостью материала: Солнце освещает внутренность мелких пор материала лучей, только когда поднимается высоко над горизонтом. Высота гор на Меркурии, вычисленная по длине теней, оказалась меньше, чем на Луне, что вероятно, тоже связано с различием в ускорениях свободного падения. Горы Меркурия достигают 2-4 км, а наибольшая высота лунных Скалистых гор составляет 5,8 км.

Необычная деталь рельефа на Меркурии - эскарп (уступ высотой 2-3 км, разделяющий два в общем ничем не отличающихся района). Протяженность таких обрывов - от сотен до полутысячи километров. Таков эскарп Дискавери. Эскарпы образовались, когда происходило сжатие Меркурия, повлекшее за собой сдвиги и наползание отдельных участков его коры. Подобного явления на Луне не наблюдалось.

Поверхность Меркурия, как и лунная поверхность, лишена ярких цветовых оттенков. Несмотря на сходство рельефа и реголита Луны и Меркурия, поверхность последнего отличается большим своеобразием. Вся видимая сторона Луны покрыта огромными низинами - «морями». А на исследованной Mariner-10 стороне Меркурия морей (т.е. есть равнин или «бассейнов») нет совсем. В этом смысле он скорей напоминает обратную сторону Луны. Здесь единственное образование, которое отдаленно напоминает большое лунное кратерное море - бассейн Caloris Planitia («Море Зноя», или «Море Жары»), часть которого находилась во время миссии Mariner-10 на самом терминаторе (на границе день-ночь). Мозаика из снимков Caloris Planitia.

Луна (слева) и Меркурий в одинаковом масштабе. Поверхности этих двух небесных тел похожи. Изображение Меркурия построено обработкой мозаики из сотен снимков, сделанных видиконной камерой аппарата Mariner-10 в 1974-1975 гг. Сторона Луны, обращенная к Земле, покрыта многочисленными лунными «морями» - равнинами застывшей лавы, извергавшейся во время формирования поверхности Луны (около 3,9 млрд лет назад). Несмотря на сходство поверхности этих тел, на поверхности Меркурия подобных «морей» Mariner-10 не обнаружил.

Выяснилось, что Caloris Planitia -не самый большой бассейн на Меркурии. Гигантское образование такого рода находится на «неизвестной» стороне планеты. За 30 лет, прошедшие после посещения Mariner-10, астрономия продвинулась настолько, что поверхность Меркурия удается исследовать в наземных астрономических наблюдениях. Важнейшую роль в этом сыграли два новшества: приемники излучения ПЗС (приборы с зарядовой связью) и компьютерные средства обработки информации. К тому же ученые теперь смело берутся за проблемы, которые совсем недавно казались такими же безнадежными, как картирование Меркурия наземными средствами.

Отложим немного описание неизвестной стороны планеты, чтобы рассказать, как все это удалось сделать. Наземные наблюдения Меркурия «классическими» методами, по сравнению с изучением других тел Солнечной системы, подвержены многим другим ограничениям. Поскольку наблюдения выполняются в астрономические сумерки или даже на фоне дневного неба, для улучшения отношения сигнал-шум часто используется ближний инфракрасный диапазон, т.к. яркость чистого неба падает с увеличением длины волны, как -4. Время наблюдений в сумерки редко превышает 20-30 мин, причем планета находится невысоко над горизонтом, когда значительная воздушная масса на луче зрения еще больше осложняет задачу. Более или менее продуктивное изучение Меркурия возможно только в горных обсерваториях низких широт. Но на пределе технических возможностей получить изображения планеты с достаточным разрешением наземными техническими и аналитическими средствами все же возможно. Что же касается улучшения качества изображений, ключевой идеей стало использование очень коротких, миллисекундных экспозиций. Одним из первых обширные серии наблюдений Меркурия с ПЗС-приемниками в 1995-2002 гг. выполнил Й. Варелл (J. Warell) в обсерватории на о. Ла Пальма (Канарские острова) на полуметровом солнечном телескопе. Экспозиции были от 25 до 300 мс. Варелл использовал единичные наиболее удачные электронные снимки без их дальнейшего совмещения. Естественно, они уступают изображениям, полученным при совместной обработке больших массивов электронных фотографий.

Уже упоминавшееся разрешение телескопа определяется отношением длины волны к его диаметру - теоретический дифракционный предел, который на длине волны зеленого, например, света, 550 нм, для полутораметрового телескопа должен составлять около 0,1 угловой секунды. Но типичное реальное разрешение оказывается в 9-15 раз хуже дифракционного предела. Оно определяется, главным образом, неспокойствием земной атмосферы и зависит от места наблюдения, времени суток, плотности аэрозольной составляющей (тумана, облаков) и, конечно, зенитного расстояния объекта. Идея метода коротких экспозиций заключается в том, что прибор использует мгновенные прояснения атмосферы, когда изображение четкое и не успевает размыться. Но все не так просто. Атмосферу можно представить себе как множество случайно образовавшихся слабо преломляющих линз неправильной формы, которые возникают и исчезают, искажая фронт приходящей световой волны. Когда астрономы получали снимки небесных тел на фотопластинках, за время экспозиции этот небесный сценарий изменялся десятки раз, а каждая точка неспокойного изображения успевала засветить тысячи зерен фотоэмульсии, размывая снимок. Характерное время, за которое мгновенные оптические свойства атмосферы изменяются, редко бывает меньше 15-20 мс. Если экспозицию сделать короткой, скажем, 3 миллисекунды, среди фотографий попадутся и «хорошие», хотя их будет немного. Уменьшение экспозиции не устраняет искажения, вызываемые нерегулярностями воздушных линз, но существенно уменьшает размытие изображения и позволяет приблизиться к дифракционному пределу. Накопив значительное количество снимков, можно затем выбрать из них изображения с наименьшими искажениями, пригодные для дальнейшей обработки. Это очень трудоемкая операция, особенно если учесть, что сам размер изображения Меркурия обычно составляет всего от 0,2 до 0,5 мм.

Несмотря на всю убедительность основной идеи метода коротких экспозиций, реализовать ее с фотоэмульсиями было невозможно: в реальных условиях наблюдений невысокая фоточувствительность эмульсий требовала минимальных экспозиций в сотни миллисекунд, а то и секунду. Короткие экспозиции стали возможными только с появлением новых детекторов изображений - ПЗС, квантовая эффективность которых достигает 80% и более. Интересно отметить, что сравнительно небольшие телескопы (диаметром 1-2 м) обладают определенными преимуществами при коротких экспозициях, т.к. охватывают меньше атмосферных «линз», но собирают еще достаточно света. Тем не менее, число фотонов, приходящееся на единичный пиксель (элемент изображения) при использовании ПЗС с высоким разрешением, всегда ограничено и подвержено значительным флуктуациям. Поэтому хороший результат можно получить лишь при последующей совместной обработке многих сотен и даже тысяч электронных снимков. А доступное время наблюдений Меркурия настолько ограничено, что экспериментальный материал необходимого объема возможно получить только на достаточно большом инструменте, когда суммарное время экспозиций составляет лишь малую часть всего наблюдательного времени. При очень благоприятных атмосферных условиях до 25% изображений получаются сравнительно четкими.

Результаты наблюдений критично зависят от состояния атмосферы, но характеризовать их можно только после завершения обработки. Начало описываемой работе положила большая удача в наших пробных наблюдениях. 3 ноября 2001 г., в Абастуманской астрофизической обсерватории республики Грузия (41°45’ с.ш., 42°50’ в.д.) с помощью новой ПЗС-камеры, установленной на телескопе диаметром 1,25 м, проводились наблюдения Меркурия в утренней элонгации планеты. Положение планеты в принципе позволяло наблюдать сектор, сфотографированный Mariner-10 в 1974 г. Всю ночь шел сильный дождь, но на рассвете облака разошлись, и при полном безветрии удалось получить серию изображений в ближнем инфракрасном диапазоне, от 700 до 950 нм. После обработки всего полученного массива снимков методами корреляционного совмещения (stacking) было создано разрешенное изображение планеты, обладавшее сходством деталей с фотомозаикой Mariner-10. Более того, очертания небольших образований размерами 150-200 км повторялись на полученном изображении. После подробного анализа результатов сомнений уже не оставалось: благодаря коротким экспозициям и необычному кратковременному прояснению атмосферы удалось получить комбинированные снимки такой четкости, которая соответствует дифракционному пределу инструмента (рис. вверху). В дальнейшем такие благоприятные атмосферные условия встречались нечасто; как правило, требовалось собрать 5-10 тыс. удачных изображений для дальнейшего синтеза изображений.

Корреляционное совмещение

Обработка исходных миллисекундных электронных фотографий планеты весьма трудоемка и отнимает много времени. Она выполняется с помощью специальных компьютерных программ методом корреляционного совмещения и, наряду с операциями «нечеткой маски» и некоторыми математическими приемами, требует выбрать так называемый пилот-файл, что обычно приходится делать вручную. Пилот-файл, или образец, - это наиболее удачный, по мнению обработчика, снимок, который в значительной мере определяет результат достигаемого совмещения. Перебор пилот-файлов многократно увеличивает трудоемкость обработки, т.к. результат становится виден только на заключительных шагах обработки. Пилот-файл должен представлять собой наименее искаженное изображение среди исходного наблюдательного материала. Дальше программы обработки анализируют содержание образца, находят в нем какие-то детали и ищут повторение этих почти незаметных подробностей в тысячах других электронных снимков. Если, исходя из опыта, форму и положение пилот-файла еще можно оценить, то оценка реальности едва различимых деталей находится где-то между изображением и воображением. В ходе настоящей работы было создано несколько программ автоматической обработки. К сожалению, эффективность автоматической программы значительно уступает корреляционному совмещению с ручным отбором.

Сравнение фрагмента изображения, синтезированного по наземным наблюдениям Меркурия, с фотокартой Mariner-10

Каждая точка изображения описывается известной математической функцией распределения интенсивности, которая в центральной части плавно убывает от центра. Обычно «точка» представляется шириной этой функции на уровне 0,7 или 0,5 максимума. Если удалось получить много тысяч исходных электронных снимков, при их обработке можно воспользоваться известными свойствами статистики случайных величин и выбирать «точку» на уровне, например, 0,9 максимума. Тогда разрешение значительно улучшится. Есть и другие приемы, но самым надежным все же остается ручной отбор.

После первой части обработки, несмотря на все приемы, изображение остается как бы размытым. Астрономы давно нашли способ улучшения изображений методом «нечеткой маски». Для этого во времена фотоэмульсий с полученного изображения делали слегка расфокусированный негатив. Затем сквозь него переснимали исходный снимок. Крупные, размытые детали таким образом уходили, а тонкую структуру мелких деталей можно было выделять вплоть до уровня шума. Сегодня эта функция встроена во многие цифровые фотокамеры. «Нечеткая маска» (в виде математической модели) работает и в наших программах обработки, но средство это обоюдоострое. Результат зависит от выбора размера элементов. Если он мал, все низкие пространственные частоты будут потеряны, а изображение станет равномерно серым; например снимок Луны на рис. на стр. 67 станет «слепым». И наоборот, если размер нечеткой маски велик, исчезнут все мелкие детали.

Постоянной проблемой синтеза изображений неизвестной части Меркурия остается доказательство реальности обнаруженных деталей рельефа. Съемкой Mariner-10 были охвачены примерно меридиональные сегменты, 120-190°з.д. и 0-50°з.д. Для этих долгот подтверждение реальности деталей новых снимков можно получить сравнением полученных изображений с фотокартой. Но в остальных случаях доказательством реальности может быть только повторяемость деталей в независимо проведенных наблюдениях. В области долгот 210-350° з.д. поверхность Меркурия была неизвестна, поэтому единственным критерием реальности деталей оставалось их наличие на нескольких изображениях, синтезированных из независимых исходных групп электронных снимков.

В области долгот 210-350°з.д

Наблюдения Меркурия выполнялись в различных обсерваториях, но всегда методом коротких экспозиций. Изображение (рис. вверху справа) построено обработкой результатов наблюдений в вечерней элонгации, проведенных 1-2 мая 2002 г. в обсерватории Скинакас Ираклионского университета (о. Крит, Греция, 24°54’ с.ш., 35°13’ в.д.). Наблюдения выполнялись в ближнем ИК-диапазоне, 690-940 нм с помощью телескопа с диаметром 1.29 м и ПЗС-камеры с размером пикселя 7,4х7,4 мкм. Диск планеты 1-2.05.2002 был виден под углом 7,75 с дуги, с линейным размером 0,37 мм в фокальной плоскости телескопа и соответствовал на ПЗС-матрице всего 50 строкам. 2 мая фаза Меркурия была 97°. Использовались короткие экспозиции, в основном 1 мс.

На рисунке, выше центра, на терминаторе, выделяется крупное темное пятно. Это крупнейший бассейн на Меркурии. В ходе обработки наблюдений автор использовал для этого образования рабочее название - «Бассейн Скинакас» (по имени обсерватории, где был получен исходный материал), отнюдь не претендуя на его узаконивание. (Как известно, всем объектам на поверхности Меркурия Международный астрономический союз присваивает имена писателей, композиторов, художников и т.д.). Тем не менее, название «Бассейн Скинакас» (или «Море Скинакас», или «Бассейн S»), стало упоминаться на ряде конференций и в некоторых статьях. Бассейн S - наиболее крупное образование в области долгот 210-290°з.д. - имеет структуру, более напоминающую некоторые крупнейшие образования на обратной стороне Луны. Бассейн представляет собой, по-видимому, очень старое (возможно, древнейшее) образование на Меркурии, с сильно разрушенными валами, фактически создаваемыми границами других, менее крупных бассейнов. Бассейн Скинакас имеет, по-видимому, структуру, сходную с поверхностью известной по съемке Mariner-10 области Caloris Planitia, имеющей, вероятнее всего, ударное происхождение. На рис. внизу приведен вид Бассейна Скинакас из работы 2003 г. Полного вида бассейна тогда не существовало, поэтому правая (восточная) часть рисунке создана на основе первых публикаций наших наблюдений 2002 г., а левая (западная) была взята из аналогичных публикаций (Dantowitz, et al., 2000; Baumgardner, et al., 2000, Astron J., 2000), где она однажды была представлена фрагментарно. Диаметр внутренней части Бассейна Скинакас около 25° (1060 км). Диаметр различимого внешнего вала вдвое больший. Центр находится примерно у 8°с.ш., 275°з.д. Внутренний вал Бассейна Скинакас обладает более или менее правильной формой. На рисунке сравниваются размеры Бассейна Скинакас и равнины Caloris Planitia, также имеющей двойной вал. Бары показаны в одинаковом масштабе. По диаметру Бассейн Скинакас в 1,5 раза больше, чем Caloris Planitia. Как уже отмечалось, операция «нечеткой маски», требует компромиссного выбора. Поэтому реальный тон района бассейна темнее, чем на рисунке. По его периферии расположены вторичные образования; некоторые из них рассматриваются ниже.

В последующие годы предпринимались новые серии наблюдений; снова использовались телескопы Абастуманской обсерватории и обсерватории Скинакас. Наиболее совершенные изображения удалось получить лишь через 4 года, на основе наблюдений в ноябре 2006 г. в обсерватории САО РАН (Нижний Архыз, Карачаево-Черкесия, 43°39’11”с.ш., 41°26’29”в.д.,), и снова благодаря удачным метеоусловиям. Преимуществом обсерватории САО в отношении наблюдений Меркурия является ее большая высота (2100 м) и сравнительно низкая широта. В числе главных задач новых наблюдений было получение общего вида Бассейна Скинакас, который в это время находился на освещенной стороне планеты. Достигнутый за прошедшие годы прогресс в обработке позволял надеяться на повышение разрешения изображений.

Методом коротких экспозиций в период 20-24 ноября 2006 г. удалось получить более 20 тыс. электронных снимков планеты в утренней элонгации, при «хорошем небе», как говорят астрономы. Угол фазы Меркурия изменялся в пределах от 103° до 80°, область наблюдаемых планетоцентрических долгот была 260-350° з.д. Наблюдения выполнялись с ПЗС камерой на телескопе «Цейсс-1000» в ближнем инфракрасном диапазоне. Диск планеты был виден под углом от 6 до 7 с дуги. Путем обработки большого массива снимков, полученных с миллисекундными экспозициями, удалось получить достаточно четкое синтезированное изображение сектора поверхности Меркурия 260-350°з.д. Кроме Бассейна Скинакас, на синтезированных изображениях выделяется также ряд крупных ударных кратеров разного возраста, и менее крупные образования. Предельное полученное разрешение не хуже формального дифракционного разрешения инструмента, около 80-100 км на поверхности Меркурия. Как и в случае наблюдений 2001 г., хорошие изображения появились при резком изменении метеоусловий (прекращение снежной пурги).

Предварительные результаты обработки наблюдений показаны на рис. вверху слева. Здесь можно видеть, как менялось положение и освещенность Бассейна Скинакас за пять дней. Левые части (а) представляют фазы планеты в указанные даты, справа (б) фазы показаны на глобусе планеты. Наиболее благоприятные метеоусловия наблюдений были 20 и 21 ноября 2006 г. Тогда же наиболее выгодным было и освещение: Солнце стояло низко над горизонтом бассейна, а тени подчеркивали его рельеф. Весь бассейн выделяется на среднем снимке (21 ноября 2006). Помимо бассейна, во всех показанных фазах примерно вдоль меридиана 310°з.д. вытянуты уже упоминавшиеся наиболее светлые кратеры. Самый яркий из них находится в северной части планеты, примерно у 65°с.ш., 330°з.д.

Первым сюрпризом оказалось крупное темное кратерное «море» настоящего лунного типа, обнаруженное на лимбе, южнее экватора. Вдоль лимба, от северного полюса до темного моря, тянется ряд светлых кратеров. На снимках вид Меркурия изменяется каждые сутки, что объясняется его быстрым орбитальным движением. Но не только. Как хорошо известно из лунных наблюдений, вид безатмосферного небесного тела при прохождении квадратуры быстро изменяется из-за так называемого эффекта оппозиции. Было интересно проследить, как трансформируется вид исследуемой планеты в этой выгодной фазе. Фазы Меркурия гораздо сложнее, чем у Луны, потому что его положение, в отличие от последней, не фиксировано и наблюдениям в любой фазе доступны, в принципе, все стороны планеты. В среднем поверхность Меркурия за сутки смещается относительно земного наблюдателя на 5°. Но и это его свойство не остается постоянным: из-за большого эксцентриситета орбиты, в некоторых ее частях, обращение обгоняет вращение планеты и суточное движение поверхности относительно Солнца останавливается и даже возвращается назад. В это время с терминатора Меркурия можно было бы наблюдать странную последовательность: восход и вскоре закат на востоке, снова восход, а затем все повторяется в обратном порядке на западе.

Все подробности лучше видны на комбинированном рис. вверху, где для синтеза левой половины изображения в обработку были включены около 7800 исходных электронных снимков. На сером поле слева показана координатная сетка, а Бассейн Скинакас выделен кружком, что позволяет сравнить повторяющиеся восточные контуры бассейна. Поле бассейна охвачено валом более или менее правильной формы. В меридиональном направлении его протяженность равна 1300 км. Интересно, что по размерам, внутренняя часть бассейна в 1.5 раза превышает крупнейшее лунное Море Дождей, а внешняя имеет масштабы лунного Океана Бурь. В отличие от Бассейна Скинакас и Caloris Planitia, поверхность Моря Дождей представляет собой лавовое поле, формирование которого относится к древней эпохе глобальных лавовых излияний на Луне. Диаметр внешнего вала Бассейна Скинакас - около 0,5 диаметра всей планеты - делает его одним из крупнейших кратерных морей на планетах группы Земли. Нерегулярная форма внешнего вала, сравнительно правильная с восточной стороны, на севере нарушена объектом, с центром, находящимся у 30°с.ш., 280°з.д., а на юге - обширной менее темной областью, которая расположена между 255 и 280°з.д. и доходит до 30°ю.ш.

Меридиан, по которому проходит терминатор на обеих половинах рисунка один и тот же, примерно 270°з.д. Здесь на широте 45-50°ю.ш., находится центр еще одного темного бассейна диаметром около 700 км, повторяющегося в обеих половинах рисунка. Яркий кратер у 65°с.ш., 330°з.д. имеет диаметр 90-100 км; с севера и юга к нему примыкают линейные структуры протяженностью 400-500 км. Такой вид выбросов из ударного кратера, возможно, связан с касательной траекторией ударника. Ограниченное разрешение снимка не позволяет достоверно судить о его деталях; возможно, сам кратер находится на протяженной светлой области.

Как уже отмечалось, выделение подробностей изображений при обработке исходных снимков идет в ущерб низким пространственным частотам. Иными словами, оттенки очень темных или светлых протяженных областей на рисунке приглушены, что позволяет выделить другие детали, например, ударные кратеры средних и крупных размеров. Среди них наиболее заметен пятиугольный 750-километровый кратер с центром у 32°ю.ш., 260°з.д. и примыкающий к нему с севера 650-километровый кратер (рис. справа сверху). Таких кратеров найдено много.

В заключение приводится наиболее удачное изображение сектора 270-350°з.д., полученное методами, которые рассматривались выше, с кропотливым отбором снимков, полученных в моменты наилучшего прояснения (рис. справа). Разрешение составляет 60-70 км на точку. Низкие пространственные частоты здесь подавлены. Изображения а и б отличаются только уровнем контрастности. Наряду с «классическими» ударными кратерами, выбросами и лучами на снимке присутствуют элементы, ранее на других планетах не встречавшиеся. Прежде всего, это четыре или пять серых полос, шириной по 250 и протяженностью до 2000 км. Полосы неким образом связаны с крупными кратерами, но природа их пока неясна. Сам снимок вполне сравним со снимками с космических аппаратов, но стоит несравнимо дешевле. Астрономы-звездники уже всерьез считают метод спеклов (он же метод коротких экспозиций) серьезным конкурентом весьма затратным космическим исследованиям.

В области долгот 210-350°з.д. поверхность Меркурия была неизвестна. Уже упоминалось, что критерием реальности деталей оставалось их наличие на нескольких независимых изображениях. Приведенные выше новые изображения поверхности планеты покрывают почти всю часть поверхности планеты, остававшейся не заснятой камерой Mariner-10, а исследованный сектор 260-350°з.д. обладает более интересным рельефом по сравнению с ранее картированными сравнительно гладкими районами. Если природа возникновения Бассейна Скинакас была подобна лунной, то остается непонятным, почему его границы так резко отличаются от четких очертаний лунных лавовых морей. Относительные скорости импакторов на орбите Меркурия были почти в 1,6 раз выше, чем на орбите Земли/Луны, а энергия соударений была выше в 2,5 раза. Поэтому можно было ожидать, что Бассейн Скинакас и другие крупные темные образования будут иметь столь же резкие очертания, как и лунные бассейны, а бассейн Caloris Planitia является исключением. Но почему-то таких границ нет.

Полученные изображения, как и снимки, сделанные камерами космических аппаратов, указывают на особенности событий на поверхности Меркурия в период максимума ее метеоритной бомбардировки. В какой-то мере эти особенности могут быть связаны с составом и, возможно, строением коры этого небесного тела. Вместе с тем, снимки Меркурия возвращают ученых к давнему и нерешенному вопросу: почему протяженные детали рельефа, такие как лунные «моря» или океаны Земли, распределены по поверхности планетных тел асимметрично и собираются на одной стороне? Как известно, такая же необъясненная асимметрия наблюдается и на других планетах земной группы. Она присутствует и на многих спутниках планет-гигантов, а не только на Луне. По-видимому, то же можно наблюдать и на поверхности Меркурия. Протяженные детали рельефа, такие как Бассейн Скинакас и другие темные бассейны, по планете распределены явно асимметрично и сосредоточены они главным образом в области долгот 250-330°з.д.. Происхождение асимметрии лунного рельефа имеет некоторые особенности, но к рельефу Меркурия и других планет земной группы они не относятся. Что же стоит за этой асимметрией?