Спектральные (оптические) методы анализа. Анализ в ИК-области спектра. Сущность метода инфракрасной спектроскопии Как снять ик спектр поглощения



ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

Число полос поглощения в спектре ИК излучения, их положение, ширина и форма, величина поглощения определяются структурой и хим. составом поглощающего в-ва и зависят от его агрегатного , темп-ры, давления и др. Поэтому изучение колебательно-вращат. и чисто вращат. спектров методами И. с. позволяет определять структуру молекул, их хим. состав, инерции молекул, величины сил, действующих между атомами в молекуле и др. Вследствие однозначности связи между строением и её мол. спектром И. с. широко используется для качеств. и количеств. спектрального анализа. Изменения параметров ИК спектров (смещение полос поглощения, изменение их ширины, формы, величины поглощения), происходящие при переходе из одного агрегатного состояния в другое, при растворении, изменении темп-ры, давления, позволяют судить о величине и хар-ре межмолекулярных взаимодействий. И. с. также находит применение в исследовании строения ПП материалов, полимеров, биол. объектов и непосредственно живых клеток. Быстродействующие спектрометры позволяют получать за доли с и используются при изучении быстропротекающих хим. реакций. Применение специальных зеркальных микроприставок даёт возможность получать спектры поглощения очень малых объектов, что представляет интерес для биологии и минералогии. И. с. играет большую роль в создании ИК лазеров и исследовании их спектров излучения. Использование в кач-ве источников излучения ИК лазеров с перестраиваемой частотой излучения позволяет получать ИК спектры с очень высоким разрешением (см. ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

(ИК-спектроскопия) - раздел оптич. спектроскопии, включающий исследование, получение и применение спектров испускания, поглощения и отражения в ИК-области спектра (см. Инфракрасное излучение). ИК-спектры получают и исследуют в принципе теми же методами, что и соответствующие спектры в видимой и УФ-областях, но с помощью спец. спектральных приборов, предназначенных для использования в ИК-области, снабжённых обычно зеркальной фокусирующей оптикой (см. Спектралъные приборы )и приёмниками, чувствительными к ИК-излучению (см. Приёмники оптического излучения). И. с. занимается гл. обр. изучением молекулярных спектров, т. к. в ИК-области расположено большинство колебат. и вращат. спектров молекул. Кроме того, в И. с. исследуются спектры излучения атомов и ионов, возникающего при переходах между близкими уровнями энергии (напр., зеемановскими подуровнями; см. Зеемана эффект), спектры отражения и поглощения кристаллов и др. твёрдых тел, ряда молекул, полупроводниковых и молекулярных лазеров и т. д. диссоциация молекул или изменение их структуры. Лишь для достаточно химически и термически стойких молекул (обычно состоящих из небольшого числа атомов) и стабильных хим. радикалов (напр., СО, СO 2 , Н 2 О, НСl, HF, CN, NO и т. д.) возможно спектров излучения (такие и радикалы используют в качестве активных сред в молекулярных ИК-лазерах).ИК-спектры селективного отражения применяются гл. обр. при исследовании спектров монокристаллов, неорганич. твёрдых веществ, минералов и т. п. вещество можно исследовать в разл. агрегатных состояниях, при различных темп-рах и давлениях, твёрдые тела в разл. состояниях. Абсорбц. И. с. позволяет получать спектры поглощения окрашенных и непрозрачных в видимой области веществ, ярко люминесцирующих веществ и пр. С помощью перестраиваемых по частоте ИК-лазеров регистрируют спектры поглощения со значительно более высоким, чем в традиц. классич. методах, разрешением. молекула, состоящая из N атомов, имеет 3N- 6 колебат. частот нормальных колебаний (при наличии симметрии нек-рые вырождаются) и 3 частоты вращения. В ИК-спектрах поглощения наблюдаются только те молекулярные частоты, при к-рых в процессе колебаний происходит изменение дипольного момента, т. е. отлична от нуля производная дипольного момента р по соответствующей нормальной координате q pl Р q №0(см. Отбора правила ). Чисто вращательные полосы ИК-поглощения наблюдаются лишь для полярных молекул. Каждое вещество имеет определённый набор собств. колебат. и вращат. частот, поэтому ИК-спектр поглощения является индивидуальной характеристикой в-ва. v или длины волны К. В классич. абсорбц. И. с. от источника с непрерывным ИК-спсктром (рис. 1) пропускают


Рис. 1. Принципиальная схема однолучевого ИК-спектрометра: Q - источник непрерывного ИК спектра; М 1 - зеркало осветителя; М 2 - зеркало конденсора; С - кювета с исследуемым веществом; М - ; Si и S 2 - входная и выходная щели монохроматора; D - приёмник излучения; А - усилитель; I - измерительный или регистрирующий прибор.

через кювету с исследуемым веществом; прошедшее через вещество излучение направляют на входную щель монохроматора, а из выходной его щели - на приёмник излучения. Затем усиливается и измеряется или регистрируется графопостроителем в процессе сканирования. В лазерной И. с. измеряется зависимость интенсивности прошедшего через вещество излучения узкополосного ИК-лазера (чаще полупроводникового с перестраиваемой частотой) от частоты излучения лазера в процессе её перестройки. v)прошедшего через кювету с веществом излучения с длиной волны l (или волновым числом v (см~ 1) = 1/l) и величинами, характеризующими поглощающее вещество, даётся обобщённым Бугера-Ламберта-Бера законом: I(v )=I" 0 (v )exp3[-k(v)cd ], где k(v) - показатель поглощения, характеризующий поглощающее вещество, с - концентрация поглощающего вещества в растворе (с=1 для чистого вещества), d - толщина поглощающего слоя вещества (кюветы), I 0 (v )=b(v )I 0 (v ), I 0 (v ) - , падающего на кювету (перпендикулярно к её окнам), b(v ) -коэф. пропускания самой кюветы, учитывающий потери на отражение от окон кюветы. Обычно ИК-спектр поглощения представляют графически в виде зависимости от v (или l) величин, характеризующих только поглощающее вещество:
коэф. пропусканияT(v )=I(v )/I" 0 (v ),
коэф. поглощенияA(v)=/I" 0 (v )=1-T(v ),
оптич. плотностиD(v )=lnI" 0 (v )/I 0 (v )=ln=k(v )cd,
и показателя поглощенияk(v )=D(v )/cd.
Величина D (v ) линейно связана с k (v ) и с, потому её обычно используют при количеств, анализе по спектрам поглощения. На практике закон Бугера - Ламберта - Вера также выражают в виде: , где e(v )=0,434k(v) - показатель ослабления. В этом случаеD(v )=lgI" 0 (v )/I(v)=e(v )cd.Закон Бугера - Ламберта - Вера справедлив при невысокой интенсивности потока падающего излучения, т. е. в том случае, когда населённость осн. уровня энергии меняется незначительно и Т(v )не зависит от величины I 0 (v ). Кроме того, пучок монохроматич. излучения, проходящего через кювету, должен быть параллельным, а молекулы поглощать излучение независимо друг от друга [т. е. k(v )не должно зависеть от с ]. Последнее допущение позволяет обобщить этот закон на случай смеси из неск. поглощающих веществ: I(v )=I" 0 (v )l0 -D(v ) , где

- суммаоптич. плотностей отд. компонентов смеси. Это соотношение лежит в основе количеств, абсорбц. молекулярного спектрального анализа (однако в нек-рых реальных смесях оно не выполняется). Oпределение Т (v) и соответственно A(v D (v) сводится к независимому последовательному измерению


Рис. 3. Спектр поглощения жидкого индена в области 2,5-16 мкм. Сверху указаны толщины кювет, при которых полученданный участок спектра.

величин I(v ) и I 0 (v ) и последующему определению I(v )/I 0 (v )=bT(v ). Для получения величины b разработан ряд методов. Двухлучевые спектрофотометры непосредственно регистрируют отношение I(v )/I 0 (v ).Осн. параметры ИК-спектра поглощения - число полос поглощения, их положение (определяемое v или l в максимуме поглощения), ширина и форма полос, величина поглощения в максимуме. Они определяются хим. составом и структурой молекул поглощающего вещества, а также зависят от агрегатного состояния вещества, темп-ры, давления, природы растворителя (в случае растворов) и др. ИК-спектры газообразных веществ при низких давлениях, полученные с помощью спектрометров высокой разрешающей силы, имеют характерную колебательно-вращат. структуру (рис. 2) с большим числом узких вращат. линий (см. Молекулярные спектры). Ширина отд. компонентов вращат.


Рис. 2. Спектр поглощения газообразного метана (СН 4) (вращательно-колебательная полоса в области l=3,3 мкм).

структуры составляет десятые п даже сотые доли см -1 и увеличивается с давлением газа. Колебательно-вращат. полосы в спектрах жидкостей расширяются и сливаются в широкие, практически бесструктурные полосы, ширина к-рых составляет 5-20 см -1 (рис. 3). Ширина полос в ИК-спектрах кристаллов несколько меньше, чем у жидкостей, что связано с упорядоченным расположением частиц в кристаллич. решётке. колебаниям молекул связано с большими трудностями. Однако колебат. полосы поглощения определ. хим. связей и групп атомов, как показал опыт, имеют близкие частоты независимо от того, в состав каких молекул они входят. Пределы характеристич. частот нек-рых хим. связей и групп атомов приведены в табл. Анализ ИК-спектров поглощения с помощью позволяет разложить сложные перекрывающиеся полосы поглощения на отдельные составляющие, к-рые затем уже легче отнести к определ. видам нормальных колебаний молекул.
* в - валентное, в а - валентное асимметричное, в с -валентное симметричное колебания; д -различные формы деформационных колебаний.
(в области 50-1000 мкм) и особенно спектры поглощения разреженных газов, полученные с помощью приборов высокой разрешающей силы, в т. ч. с помощью перестраиваемых лазеров, применяются для определения структуры молекул, их моментов инерции и величин дипольных моментов, энергии межатомных взаимодействий, механических коэф. ангармоничности, вращательных постоянных и пр. Характеристичность частот колебаний позволяет проводить анализ сложных органич. соединений и особенно неизвестных соединений. И. с. применяется для анализа изомеров (рис. 4, см. Изомерия молекул), для исследования строения полупроводниковых материалов, полимеров, биол. объектов и непосредственно живых клеток. И. с. играет большую роль в создании и изучении молекулярных ИК-лазеров. Быстродействующие ИК-спектрометры позволяют получать спектры поглощения за доли секунды и используются при изучении быстропротекающих хим. реакций. С помощью спец. спектральных приборов можно получать спектры поглощения очень малых объектов, что представляет интерес для биологии и минералогии. В случае сильно поглощающих веществ, из к-рых не удаётся создать тонкий слой, для получения спектров ИК-поглощения применяются методы нарушенного полного внутреннего отражения (НПВО).Для получения ИК-спектров поглощения используется большое число разл. спектрометров. Спектрометры с призменными монохроматорами позволяют получать спектры с разрешением dv ~l-3 см -1 и применяются лишь для исследования спектров конденсированных сред. Серийные спектрометры с дифракц. монохроматорами дают возможность получать спектры с разрешениемдо dv ~0,2 см -1 , уникальные дифракц. спектрометры - dv ~0,02-0,05 см -1 и применяются для исследования спектров разреженных молекулярных газов. Разрешение Фурье спектрометров может достигать dv ~0,005 см -1 . При использовании перестраиваемых по частоте лазеров спектральное разрешение ИК-спектров

Рис. 4. Спектры поглощения о-, m- и р-изомеров жидкого крезола; стрелками отмечены характеристические полосы поглощения отдельных изомеров.

поглощения определяется шириной линии генерации лазера; при использовании полупроводниковых лазеров оно достигает dv ~10 -3 -10 -4 см -1 , а газовых лазеров - несколько выше, хотя при этом область перестройки частоты обычно невелика. Нек-рые ИК-спектрометры имеют встроенную мини-ЭВМ, к-рая используется при регистрации и автоматич. обработке ИК-спектров: определения частот полос поглощения, их интенсивностей и др. С 70-х гг. в И. с. получил распространение метод фотоакустической спектроскопии для получения ИК-спектров поглощения газов, твёрдых тел и особенно дисперсных сред. Субмиллиметровая спектроскопия). Лит.: Беллами Л., Инфракрасные спектры молекул, пер. с англ., М., 1957; Применение спектроскопии в химии, пер. с англ., М., 1970; Кросс А., Введение в практическую инфракрасную спектроскопию, пер. с англ., М., 1961; Прикладная инфракрасная спектроскопия. [Сб. ст.], под ред. Д. Кендалла, пер. с англ., М., 1970; Инфракрасная спектроскопия высокого разрешения. Сб. ст., пер. с франц., англ., М., 1972; Малышев В. И., Введение в экспериментальную спектроскопию, М., 1979. В. И. Малышев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


дисциплина «Экологическая токсикология»

Инфракрасная спектроскопия как метод анализа

объектов окружающей среды

I. Изучите общую характеристику метода ИК-спектроскопии, ответьте на вопросы, решите задачи

Инфракрасное излучение занимает в электромагнитном спектре область между видимым светом и радиоизлучением. Инфракрасным называют излучение с длинами волн от 0.8 до 1000 мкм. ИК-диапазон условно делится на ближнюю, среднюю и дальнюю области:

Для характеристики ИК-излучения чаще используют волновые числа (величины обратные длинам волн – обратные сантиметры, см-1). Между волновым числом и длиной волны существует соотношение:

ν = 104 / λ

где ν - волновое число в см-1, а λ - длина волны в мкм

Явление взаимодействия веществ с ИК-излучением открыто в 1881 г. Было обнаружено, что при облучении вещества инфракрасным светом разной частоты, оно поглощает кванты энергии избранных частот - тех, которые характерны для имеющихся в веществе структурных фрагментов. Впервые были получены спектры органических жидкостей в диапазоне длин волн от 1 до 1,2 мкм.

Для объяснения причины поглощения органическими соединениями ИК-излучения определенной частоты воспользуемся рассмотрением следующей модели. Все молекулы состоят из химически связанных между собой атомов. Атомы в молекуле находятся в постоянном колебательном движении. Это движение напоминает колебание шариков, связанных пружинами. Частота колебаний зависит от силы химической связи и масс связанных атомов. Переходы между колебательными энергетическими уровнями молекул лежат в инфракрасном диапазоне, а поглощение инфракрасного излучения вызывает колебания, связанные с изменением либо длин связи, либо углов между связями. Это означает, что в зависимости от частоты поглощенного излучения начинает растягиваться определенная связь или искажаться определенный угол между связями. Таким образом, основными типами колебаний являются так называемые валентные (изменение длины связи) и деформационные (изменение угла) колебания. Регистрируя интенсивность прошедшего излучения в зависимости от длин волн (или волновых чисел), получают кривую, на которой видны полосы поглощения. Это и есть ИК-спектр. В качестве примера рассмотрим спектры токоферола (витамин Е) и его сложных эфиров с алифатическими и ароматической кислотами (рис. 1). На ИК-спектрах эфиров исчезает полоса, соответствующая валентным колебаниям О-Н связи гидроксила, но появляется полоса, соответствующая валентным колебаниям С=О группы сложноэфирной группировки.


ИК-спектры принято записывать в виде зависимости пропускания ИК-излучения (%) от волнового числа. Поэтому максимумы пиков, отвечающие наибольшему поглощению ИК-излучения, обращены вниз.

Кюветы для ИК-спектрометрии изготавливают из солевых материалов (NaCl, KBr, CaF2, LiF и др.). Область прозрачности кюветы в ИК-области зависит от используемого материала:

Не существует растворителей, которые при значительной толщине слоя были бы полностью прозрачными для ИК-спектров. Четыреххлористый углерод (при толщине слоя до 5 мм) практически прозрачен до 1666 см-1. Углерода дисульфид (толщиной 1 мм) подходит как растворитель до 250 см-1 за исключением областей от 2381 до 2000 см-1 и от 1819 до 333 см-1, где он имеет сильное поглощение. Другие растворители прозрачны в относительно узкой области. Растворители, применяемые в ИК-спектрометрии, должны быть инертны к материалу, из которого сделана кювета.

Рис. 1. ИК-спектры токоферола и его сложных эфиров с уксусной, янтарной и никотиновой кислотами: фенольный гидроксил - валентные колебания νО-Н 3450 см -1 ; сложноэфирная группа алифатических и ароматических кислот - валентные колебания νС=О 1750-1715 см-1.

Современные типы ИК-спектроскопии. ИК-Фурье спектроскопия. Фурье-спектроскопия представляет собой один из вариантов метода ИК-спектроскопии и по существу не является отдельным спектральным методом. Термин «ИК-Фурье спектроскопия» возник с появлением нового поколения приборов, в основе оптической схемы которых используются различного типа интерферометры. После получения результирующей интерферограммы исследуемого вещества, его ИК-спектр рассчитывается компьютером с использованием математического преобразования Фурье.

ИК-Фурье спектрометры отличаются от диспергирующих приборов, в которых набор ИК частот получают с помощью диспергирующих устройств (призмы или дифракционной решетки), прежде всего более простой и надежной конструкцией прибора, возможностью выполнять исследования, требующие проведения быстрого сканирования – съемка спектров веществ в процессе газохроматографического разделения, проведение измерений в потоке или кинетических измерений.

1) укажите в каком диапазоне длин волн находится ИК область электромагнитного спектра, какие поддиапазоны в ней выделяют – запишите их в нм, мкм и см-1;

2) дайте объяснения причины поглощения органическими соединениями ИК-излучения;

3) определите понятие «валентное колебание», «деформационное колебание», приведите примеры (связь – тип колебания - частота);

4) укажите основные отличия Фурье ИК спектроскопии от классического спектрального анализа;

5) переведите следующие значение длин волн в соответствующее волновое число: 1200 нм, 3,4 мкм, 2100 нм;

6) используя справочные таблицы, схематично изобразите ИК-спектр воды, этанола, бензола. (http://www2.ups. edu/faculty/hanson/Spectroscopy/IR/IRfrequencies. html , http://www. /Infrared_spectroscopy_absorption_table )

7) используя справочные таблицы, решите задачи:

II. ИК спектроскопия в практике аналитического контроля качества питьевой воды . Изучите изложенный ниже материал, выполните задания

В практике аналитического контроля качества вод под нефтепродуктами понимают неполярные и малополярные углеводороды (алифатические, ароматические, алициклические), составляющие основную и наиболее характерную часть нефти и продуктов ее переработки. Содержание нефтепродуктов является одним из обобщенных показателей, характеризующих качество вод. Для питьевых вод предельно допустимая концентрация (ПДК) составляет 0,1 мг/дм3. Загрязнение нефтепродуктами является наиболее типичным и весьма опасным фактором воздействия хозяйственной деятельности человека на окружающую среду. Основными методами количественного химического анализа, применяемыми в настоящее время при определении нефтепродуктов в водах, являются гравиметрический, ИК-спектроскопический, газохроматографический и флуориметрический.


Гравиметрический метод основан на экстракции нефтепродуктов из пробы, очистке экстракта от полярных веществ, удалении экстрагента путем выпаривания и взвешивании остатка. Он используется, как правило, при анализе сильно загрязненных проб и не может использоваться при анализе проб, содержащих нефтепродукты на уровне ПДК, поскольку нижняя граница диапазона измерений составляет 0,3 мг/дм3 при объеме анализируемой пробы 35. Несомненным достоинством метода является то, что не требуется предварительная градуировка средства измерения. В силу этого метод принят в качестве арбитражного.

Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см-1, обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений. Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см-1, в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2.

100%" style="width:100.0%;border-collapse:collapse">

2) Прочитайте ГОСТ Р «51797-2001. Вода питьевая. Метод определения содержания нефтепродуктов». Ответьте на вопрос с чем связаны основные проблемы экологического характера при применении метода ИК спектроскопии для контроля содержания нефтепродуктов в воде? Приведите структурную формулу и основные характеристики токсичности для одного из растворителей из класса хлорфторуглеродов.

3) Прочитайте статью «Harnessing the Power of FT-IR to Guarantee Water Safety». В статье описаны три альтернативные методики для определения содержания нефтепродуктов в воде. Охарактеризуйте их, заполнив таблицу:

III. Прочитайте материал про основы техники ИК эксперимента, основы пробоподготовки и проведения измерений. Ответьте на вопросы:

1) Что такое ИК спектр?

2) Перечислите основные задачи колебательной спектроскопии и структурной органической химии .

3) Особенности получения ИК спектров для газов, жидкостей и твердых соединений.

4) Опишите сущность метода НПВО.

5) Требования к толщине поглощающего слоя при проведении измерений в режиме НПВО. Глубина проникновения излучения в образец.

6) Какие характеристики вещества влияют на качество получаемых спектров? Требования к размеру частиц порошка.

7) Условия прессования таблетки – время и давление.

8) Техника пробоподготовки и измерения спектров пропускания в суспензиях.

9) Спектральные характеристики вазелинового масла. Как можно избежать влияния собственных полос поглощения вазелинового масла?

10) Требования к кристаллам для НПВО.

Транскрипт

1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА ФАКУЛЬТЕТ НАУК О МАТЕРИАЛАХ МЕТОДИЧЕСКАЯ РАЗРАБОТКА ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ И.В. Колесник, Н.А. Саполетова Москва 2011

2 ОГЛАВЛЕНИЕ 1. ТЕОРИЯ 4 Физико-химические основы метода ИК-спектроскопии 4 Оптическая спектроскопия. Инфракрасная спектроскопия (ИК) и спектроскопия комбинационного рассеяния (КР). 4 Структура атомных и молекулярных спектров. Вращательные и колебательные спектры. 7 Колебания многоатомных молекул 8 Типы приборов, схемы 11 Введение 11 Принципы устройства и действия ИК-спектрометров 11 Основы техники эксперимента: спектры пропускания, нарушенного полного внутреннего отражения (НПВО) и диффузного отражения 17 Спектры поглощения 17 Дифференциальный метод 20 Техника методов НПВО ТЕХНИКА ПРОБОПОДГОТОВКИ 25 Техника пробоподготовки и измерение спектров пропускания с образцов, спрессованных в тонкие таблетки (на примере KBr) 25 Приготовление таблеток 25 Съемка спектров 26 Техника пробоподготовки и измерение спектров пропускания с образцов в суспензиях (ГХБ, вазелиновое масло) 27 Суспензии 27 Шлифование пластин из KBr 29 Техника пробоподготовки и измерение спектров НПВО 30 Введение 30 Основные принципы 30 Используемые материалы 31 Приставка для НПВО спектроскопии РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ СПЕКТРОМЕТРА SPECTRUM ONE 33 Устройство спектрометра 33 Экскурсия по спектрометру 33 Приставки Spectrum One 35 Внутреннее устройство прибора 36 Обслуживание прибора 37 Уход за прибором Spectrum One 37 Перемещение Spectrum One 37 Замена осушителя 38 Методика измерений 45 Порядок действий 45

3 Приставка для снятия спектров диффузного отражения 52 Введение 52 Комплект поставки 53 Меры предосторожности 53 Установка 53 Калибровка приставки 55 Анализ образцов РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ 62 Задача 1. Исследование ИК-спектров гидроксида алюминия 62 Задача 2. Исследование ИК-спектров пивалата церия 67 Задача 3. Исследование реакции восстановления хинонов до углеводородов методом ИК-спектроскопии 71 Задача 4. Исследование процесса образования водородной связи в растворах этилового спирта в четыреххлористом углероде методом ИК-спектроскопии 73 Задача 5. Количественный анализ СПИСОК ЛИТЕРАТУРЫ ПРИЛОЖЕНИЕ. КРАТКИЕ ТАБЛИЦЫ ХАРАКТЕРИСТИЧЕСКИХ ЧАСТОТ 80 Частоты характеристических колебаний связей в органических соединениях 80 Частоты характеристических колебаний связей в неорганических соединениях 86

4 1. Теория Физико-химические основы метода ИК-спектроскопии Оптическая спектроскопия. Инфракрасная спектроскопия (ИК) и спектроскопия комбинационного рассеяния (КР). Спектроскопическими методами анализа называются методы, основанные на взаимодействии вещества с электромагнитным излучением. Одним из важнейших понятий, используемых в спектроскопии, является понятие спектра. Спектр это последовательность квантов энергии электромагнитных колебаний, поглощенных, выделившихся или рассеянных при переходах атомов или молекул из одних энергетических состояний в другие. Рис. 1.1 Области электромагнитного спектра, , 152 с. Диапазон электромагнитного излучения простирается от наиболее длинноволнового излучения радиоволн с длинами волн более 0,1 см - до наиболее высокоэнергетического γ- излучения с длинами волн порядка м (см. Ошибка! Источник ссылки не найден..1). Отдельные области электромагнитного спектра перекрываются. Следует отметить, что

5 область электромагнитного спектра, которая воспринимается человеческим глазом, весьма незначительна по сравнению со всем его диапазоном. Характер процессов, протекающих при взаимодействии излучения с веществом, различен в разных спектральных областях. В связи с чем, спектроскопические методы анализа классифицируют по длине волны (энергии) используемого излучения. В то же время, оптическая спектроскопия подразделяется и по изучаемым объектам: на атомную и молекулярную . При помощи атомной спектроскопии можно проводить качественный и количественный анализ элементного состава вещества, т.к. для каждого элемента характерен свой уникальный набор энергий и интенсивностей переходов между электронными уровнями в атоме. Из данных молекулярной спектроскопии можно извлекать данные об электронной структуре молекул и твердых тел, а также информацию об их молекулярной структуре. Так, методы колебательной спектроскопии, включающие инфракрасную (ИК) спектроскопию и спектроскопию комбинационного рассеяния (КР), позволяют наблюдать колебания связей в веществе. Наборы полос в ИК и КР-спектрах являются такой же специфической характеристикой вещества, как и отпечатки пальцев человека. По этим спектрам вещество может быть идентифицировано, если его колебательный спектр уже известен. Кроме того, по ИК и КР спектрам определяют симметрию и структуру неизученных молекул. Частоты основных колебаний, находимые из спектров необходимы для расчета термодинамических свойств веществ. Измерение интенсивности полос в спектрах позволяет проводить количественный анализ, изучать химические равновесия и кинетику химических реакций, контролировать ход технологических процессов. Таблица 1.1 Взаимосвязь спектроскопических методов и областей электромагнитного спектра. Спектроскопические Спектральная область Изменяют свою энергию методы Ядерно-физические 0,005 1,4 Å Ядра Рентгеновские 0,1 100 Å Внутренние электроны Вакуумная УФспектроскопия нм Валентные электроны УФ-спектроскопия нм Валентные электроны Спектроскопия в видимой нм Валентные электроны

6 области Ближняя ИКспектроскопия энергия) Молекулы (колебательная нм Молекулы (колебательная, ИК-спектроскопия см -1 вращательная энергия) Микроволновая 0,75 3,75 мм Молекулы (вращательная энергия) спектроскопия Электронный Неспаренные электроны (в 3 см парамагнитный резонанс магнитном поле) Ядерный магнитный Ядерные спины (в магнитном 0,6 10 м резонанс поле) В результате взаимодействия потока излучения с веществом интенсивность потока (I 0) уменьшается вследствие процессов поглощения (на величину I A), отражения (I R) и рассеяния (I S). Связь между этими величинами и интенсивностью потока I, прошедшего через вещество, выражается следующим соотношением: I I I I I 0 A R S (1) Методы, основанные на взаимодействии вещества с излучением ИК-области спектра являются абсорбционными, т.е. основанными на явлении поглощения излучения. Эмиссионные методы в этой области спектра не используют ввиду трудностей получения и регистрации спектров испускания. В ИК-области для характеристики энергии фотонов чаще всего используют величину, называемую волновым числом: _ 1. (2) Ее размерность см -1, т.е. это число длин волн, укладывающихся на отрезке 1 см. Волновое число прямо пропорционально энергии: _ E h (3) В ИК спектроскопии спектр поглощения (или пропускания) представляют в координатах оптическая плотность (или интенсивность пропускания) - волновое число.

7 Структура атомных и молекулярных спектров. Вращательные и колебательные спектры. Для атомов характерны дискретные спектры, состоящие из отдельных спектральных линий линейчатые спектры. Количество спектральных линий в них растет по мере увеличения числа электронов на внешних электронных оболочках. Спектры молекул в радиочастотном диапазоне и дальней ИК-области имеют линейчатый характер, а в средней и ближней зонах ИК-, УФ- и видимой областях наблюдаются полосатые спектры . Появление полос в молекулярных спектрах связано с существованием в молекуле трех видов движения: электронного, колебательного и вращательного. Энергию молекулы E можно приближенно представить в виде суммы электронной E e, колебательной E v и вращательной E r энергий: E E E E (4) e v r Эти виды энергии различаются весьма существенно E» E» E. Каждая из входящих в выражение (4) энергий квантуется, т.е. ей соответствует определенный набор дискретных энергетических уровней. Качественная схема энергетических уровней двухатомной молекулы приведена на Ошибка! Источник ссылки не найден.. Для простоты на ней изображены лишь два электронных уровня колебательных уровней e v E e. Каждому электронному уровню отвечает свой набор E v, а каждому колебательному уровню свой набор вращательных уровней E r. При изменении энергии электронов у молекулы одновременно изменяются колебательная и вращательная энергии, и вместо электронных наблюдаются электронноколебательно-вращательные переходы. Частоты спектральных линий, отвечающие этим переходам, определяются выражением r e, v, r e v r. Поскольку число таких линий весьма велико, то электронно-колебательно-вращательный спектр, обычно называемый электронным, принимает вид широких перекрывающихся полос. Электронные спектры испускания и поглощения наблюдают в интервале нм (УФ, видимая и ближняя ИКобласти). По этой же причине полосатую структуру имеют и колебательные спектры (см -1, средняя и дальняя зоны ИК-области).

8 Рис. 1.2 Схема энергетических уровней двухатомной молекулы, Колебания многоатомных молекул Всевозможные положения молекул в трехмерном пространстве сводятся к поступательному, вращательному и колебательному движению . Молекула, состоящая из N атомов, имеет всего 3N степеней свободы движения. Эти степени свободы распределяются между видами движения по-разному в зависимости от того, является молекула линейной или нет. Для молекул обоих типов существует по 3 поступательных степени свободы, а число вращательных степеней свободы для нелинейных молекул равно 3, а для линейных 2. Таким образом, на долю колебательных степеней свободы (рис.1.3.) приходятся: 3N-5 степеней свободы для линейных молекул, 3N-6 степеней свободы для нелинейных молекул. Основные типы колебаний молекулы называются нормальными колебаниями. На Ошибка! Источник ссылки не найден. показаны нормальные колебания трехатомных молекул. Более строго, нормальными колебаниями называются такие колебания, которые происходят независимо друг от друга. Это означает, что при возбуждении нормального колебания не происходит никакой передачи энергии для возбуждения других колебаний. В случае нормальных колебаний атомы колеблются в одной фазе и с одинаковой частотой. Несимметричные движения атомов приводят к более сложным колебаниям. Каждое

9 колебание атомов в молекуле может быть представлено как линейная комбинация нескольких нормальных колебаний. С точки зрения формы колебаний различают: валентные колебания (ν), которые происходят в направлении химических связей и при которых изменяются межатомные расстояния; деформационные колебания (), при которых изменяются валентные углы, а межатомные расстояния остаются постоянными. При поглощении инфракрасного излучения возбуждаются только те колебания, которые связаны с изменением дипольного момента молекулы. Все колебания, в процессе которых дипольный момент не изменяется, в ИК-спектрах не проявляются. Рис Различные возможности движения трехатомных молекул. а) Молекула H 2 O (нелинейная). б) Молекула CO 2 (линейная),

10 В экспериментально полученных колебательных спектрах число полос часто не совпадает с теоретическим. Как правило, в экспериментальных спектрах полос меньше ввиду того, что не все возможные колебания возбуждаются, а некоторые из них являются вырожденными. Экспериментальный спектр может быть и более богат полосами по сравнению с теоретическим из-за наличия обертонов и сложных колебаний. Частоты сложных колебаний равны линейным комбинациям частот различных валентных и деформационных колебаний.

11 Типы приборов, схемы Введение Изучение ИК спектров соединений позволяет получить значительную информацию о строении, составе, взаимодействии структурных единиц (фрагментов), составляющих вещество как в твердом состоянии (кристаллическом или аморфном), так и в растворе. ИК спектры дают также сведения о состоянии молекул, сорбированных на поверхности вещества или находящихся внутри его объема благодаря наличию каналов, пор, интервалов между слоями и межзеренных пространств. ИК область спектра охватывает длины волн от границы видимой области, т. е. от 0,7 до 1000 мкм, что соответствует 10 см -1 нижнему пределу колебательных частот молекул. Вся ИК область условно делится на ближнюю, среднюю и дальнюю, или длинноволновую. Такое подразделение возникло в связи со свойствами оптических материалов (прозрачностью и линейной дисперсией) Если границей между ближней и средней областью принято считать ~ 2 мкм (~ 5000 см -1), то граница между средней и длинноволновой областью связывалась с длинноволновым пределом рабочего диапазона призмы из кристалла КВr 25 мкм (400 см - 1). В связи с созданием, с одной стороны, призм из бромида и иодида цезия, а с другой, ИКспектрометров с дифракционными решетками и интерферометров Международным союзом по чистой и прикладной химии (IUPAC) было рекомендовано называть длинноволновой область ниже 200 см -1 (низкочастотный предел рабочего диапазона призмы CsI, соответствующий длине волны 50 мкм). Принципиальных различий между интервалами и см -1, как и областью выше 400 см -1, конечно, нет, но аппаратура и методики имеют свою специфику для каждой из областей. Спектральный интервал ниже 10 см -1 (λ > 1000 мкм) обычно исследуется методами микроволновой и радиоспектроскопии. Принципы устройства и действия ИК-спектрометров Благодаря успехам в развитии спектрального приборостроения, в настоящее время имеются приборы различных конструкций, которые охватывают весь диапазон инфракрасного излучения. По принципу получения спектра приборы для ИК-области можно разделить на две основные группы: диспергирующие и недиспергирующие .

12 Диспергирующие спектрометры В качестве диспергирующего устройства используются призмы из материала с соответствующей ИК-диапазону дисперсией и дифракционные решетки. Обычно для средней ИК-области (см -1) применяют призмы из монокристаллов KBr, NaCl и LiF. В настоящее время призмы находят незначительное применение и практически вытеснены дифракционными решетками, дающими большой выигрыш в энергии излучения и высокое разрешение. Но, несмотря на высокое качество этих приборов, они все больше заменяются на фурье-спектрометры, относящиеся к группе недиспергирующих приборов. Одно- и двух-лучевые схемы Сканирующие диспергирующие ИК-спектрометры по схеме освещения бывают однолучевыми и двухлучевыми. При однолучевой схеме спектр поглощения исследуемого регистрируется на совпадающей с длиной волны кривой интенсивности и вместе с фоновым поглощением. Обычно используется двухлучевая схема, которая позволяет выравнивать фон, т.е. линию полного пропускания, и компенсировать поглощение атмосферных паров Н 2 О и СО 2, а также ослабление пучков окнами кюветы и, если необходимо, поглощение растворителей. Рис. 1.4 Блок-схема двухлучевого сканирующего ИК-спектрометра : 1 источник ИКизлучения; 2 система зеркал; 3 рабочий пучок и образец; 4 пучок сравнения и компенсатор фона; 5 прерыватель-модулятор; 6 входная щель монохроматора; 7 диспергирующий элемент (дифракционная решетка или призма с зеркалом Литтрова); 9 приемник; 10 усилитель; 11 мотор отработки; 12- фотометрический клин; 13 самописец; 14 мотор развертки Блок-схема двухлучевого сканирующего ИК-спектрометра представлена на Рис.1.4. Регистрация спектра осуществляется следующим образом: ИК-излучение от источника 1 делится на два пучка. Рабочий пучок проходит через образец, а пучок сравнения через какой-то компенсатор (кювета с растворителем, окно и т. п.). С помощью

13 прерывателя 5 пучки поочередно направляются на входную щель 6 монохроматора и через нее на диспергирующий элемент 7. При медленном его повороте, осуществляемом мотором развертки 14, через выходную щель 8 монохроматора на приемник 9 последовательно проходят вырезаемые щелью узкие по интервалу длин волн, в идеале монохроматические, лучи. Если излучение данной длины волны в рабочем пучке и пучке сравнения имеет разную интенсивность, например, ослаблено в рабочем пучке поглощением образца, то на приемнике возникает переменный электрический сигнал. После усиления и преобразования этот сигнал поступает на мотор отработки 11, который приводит в движение фотометрический клин 12 (диафрагму) до уравнивания потоков излучения (метод оптического нуля). Движение фотометрического клина связано с движением пера самописца 13 по ординате, а поворот диспергирующего элемента - протяжкой бумажной ленты или движением держателя пера по абсциссе. Таким образом, в зависимости от градуировки в процессе сканирования может регистрироваться спектральная кривая зависимости пропускания (поглощения) в процентах или оптической плотности образца от волнового числа (или длины волны). Монохроматоры Принципиальной частью сканирующих спектрометров является монохроматор. В качестве диспергирующего устройства в нем могут служить призмы из прозрачных в ИКобласти материалов с подходящей дисперсией или дифракционные решетки эшелетты. Поскольку дисперсия материалов является наибольшей у длинноволнового предела их прозрачности и быстро падает с уменьшением длины волны, в средней ИК-области используют обычно сменные призмы, изготовленные из монокристаллов LiF, NaCl, KBr, а для области см -1 - из CsI. Недиспергирующие приборы В основе действия Фурье-спектрометров лежит явление интерференции электромагнитного излучения. Для изготовления этих приборов используют интерферометры нескольких типов. Наибольшее распространение получил интерферометр Майкельсона. В этом приборе поток инфракрасного излучения от источника преобразуется в параллельный пучок и затем разделяется на два луча с помощью светоделителя. Один луч попадает на подвижное зеркало, второй - на неподвижное. Отраженные от зеркал лучи возвращаются тем же оптическим путем на светоделитель. Эти лучи интерферируют благодаря приобретенной разности хода, а, следовательно, и разности фаз, создаваемой подвижным зеркалом. В результате интерференции получается сложная интерференционная

14 картина, являющаяся наложением интерферограмм, которые отвечают определенной разности хода и длине волны излучения. Объединенный световой поток проходит через образец и попадает на приемник излучения. Усиленный сигнал поступает на вход компьютера, который осуществляет Фурье-преобразование интерферограммы и получение спектра поглощения исследуемого образца. Фурье-преобразование является сложной вычислительной процедурой, однако интенсивное развитие вычислительной техники привело к созданию небольших по размерам быстродействующих компьютеров, встроенных в спектрометр, которые позволяют за короткое время получить спектр и провести его обработку c.291] Рис Принципиальная оптическая схема интерферометра Майкельсона (без коллимации пучков), . Кривая интенсивности излучения этих источников, нагреваемых током до высоких температур, имеет вид кривой излучения абсолютно черного тела. Так, например, у глобара при температуре ~ 1300 С максимум интенсивности излучения приходится на область ~ 5000 см -1 (~ 2 мкм), а в области ~ 600 см -1 (16,7 мкм) интенсивность падает примерно в 600 раз. Хорошие источники излучения в длинноволновой ИК-области вообще отсутствуют. Основная доля теплового излучения нагретых твердых тел или излучения газового разряда приходится на видимую и ближнюю ИК-область спектра, а в длинноволновой части мощность излучения этих источников составляет ничтожную долю общей мощности. Например, дуговая лампа при полной мощности излучения 1 квт дает здесь мощность всего 10-1 Вт. До низкочастотного предела 200 см -1 используются обычно указанные выше тепловые источники ИК-излучения, но они являются очень слабыми даже в интервале см -1, где кривая интенсивности I(λ) имеет далекий от максимума склон. Ниже 200 см -1 в качестве источника служит обычно ртутная лампа высокого давления. В верхней части ее рабочего диапазона используется в основном тепловое излучение нагретых стенок, а ниже поток излучения ртутной дуги и плазменная эмиссия. Приемники ИК-излучения В качестве приемников излучения в спектрометрах для средней ИК-области используются чувствительные термопары («термостолбики») или болометры, построенные по принципу термометров сопротивления. К тепловым приемникам относится также пневматический или оптико-акустический приемник (ячейка Голея), в котором под действием излучения происходит тепловое расширение газа. Газ помещается в зачерненной камере с гибкой стенкой, имеющей зеркальное внешнее покрытие. Движение отраженного зеркалом светового луча регистрируется фотоэлементом. Этот приемник изготовляется обычно для длинноволновой ИК-области, где используется также другая группа приемников: квантовые или фотонные.

17 Основы техники эксперимента: спектры пропускания, нарушенного полного внутреннего отражения (НПВО) и диффузного отражения Спектры поглощения Общие принципы Если подвергнуть какое-либо вещество воздействию непрерывной световой энергии инфракрасного диапазона и разложить прошедший световой поток в монохроматоре по длинам волн (воспользоваться Фурье-спектрометром), затем графически отобразить зависимость интенсивности прошедшего света от длины волны, получится ИК-спектр. На фоне непрерывного спектра с интенсивностью I o проявляются полосы поглощения с характерными для определенного вещества волновыми числами . Исследования показали, что ИК-спектры индивидуальны как для каждого химического соединения, так и для некоторых атомных группировок. В зависимости от состава, строения и природы связей вещества его спектр отличается от спектров других веществ по числу полос, их положению на шкале волновых чисел и интенсивности. Следовательно, ИК-спектры можно использовать с целью идентификации и качественного анализа химических соединений на наличие отдельных атомных группировок. Это первая и простейшая задача колебательной спектроскопии. Вторая задача связана с применением колебательной спектроскопии для целей количественного анализа. Для ее решения следует лишь знать эмпирические зависимости интенсивности полос в спектре от концентрации вещества в образце. Исследование колебательных спектров для идентификации веществ и количественного анализа представляет далеко не все возможности этого метода, который сейчас широко используется для решения задач структурной неорганической химии. А именно: а) для изучения природы химических связей, б) для исследования симметрии молекул и ионов, в) для выявления межмолекулярного взаимодействия . При получении ИК-спектров поглощения вещества могут находиться во всех трех агрегатных состояниях: газообразном, жидком и твердом. Методика приготовления образцов и конструкция кювет зависит от агрегатного состояния вещества. Окошки кювет обычно изготовляются из монокристаллов солей главным образом галогенидов щелочных и щелочноземельных металлов (чаще всего из бромида калия). Гигроскопичность последних и неустойчивость к температурным воздействиям вызывают часто значительные трудности при получении ИК-спектров .

18 Газы При записи спектра газообразных веществ используются кюветы с расстоянием между окошками 100 мм и больше. Для высокотемпературной съемки спектров газов кюветы длиной около 1 м имеют металлические стаканы, центральная часть которых нагревается с помощью спирали, через которую пропускается электрический ток. Чтобы воспрепятствовать диффузии и конденсации паров вещества на охлаждаемых окошках, в кювету вводится какой-либо инертный газ . Так как количество вещества на пути светового пучка определяется температурой и давлением газа, то для получения большей точности количественного анализа следует тщательно контролировать эти параметры . Жидкости и растворы Для съемки спектров жидкостей и растворов используются два типа кювет: разборные и постоянной толщины. Разборные кюветы состоят из двух окошек, вкладыша и стеклянного стакана. Их толщина может варьироваться изменением высоты стеклянного стакана. Герметичность обеспечивается надежным оптическим контактом торцевых поверхностей стеклянного стакана с поверхностью окошек. Кюветы постоянной толщины состоят из двух склеенных окошек, между которыми находится прокладка определенной толщины из тефлона или свинца. Расстояние между окошками жидкостных кювет составляет обычно от 0,01 до 1 мм. При съемке ИК-спектров растворов растворители обычно подбираются исходя из того, чтобы их пропускание в исследуемой области спектра составляло не менее 25%. Весьма широкие области пропускания характерны для таких растворителей, как CCl 4, CS 2, CHCl 3, CH 3 CN, C 6 H 6 и некоторых других. Вода в ряде областей ИК-спектра не прозрачна. Области пропускания ее можно существенно расширить, если наряду с растворами в простой воде снимать спектры растворов в тяжелой воде (D 2 O). Так как растворители имеют собственный спектр поглощения, то может стать проблемой подбор растворителя, в котором растворилось бы достаточное количество образца и спектр которого в то же время не налагался бы на подлежащие измерению полосы поглощения образца. Используется широкий набор различных растворителей. Большинство организаций, услугами которых пользуются лаборатории, предоставляет каталоги наиболее распространенных растворителей с указанием областей спектра, где они пригодны для использования. При съемке спектров водных растворов для изготовления окошек кювет следует применять специальные негигроскопичные материалы: CaF 2, KRS, AgCl, Si, Ge.

19 Твердые вещества Твердые вещества можно снимать в виде тонких срезов монокристаллов (толщиной несколько сотых мм) или пленок, но гораздо чаще приходится иметь дело с поликристаллическими порошками. Для уменьшения светорассеяния частицами таких порошков готовят их суспензии в какой-нибудь достаточно вязкой и прозрачной для ИКлучей жидкости. Для этой цели обычно используют вазелиновое масло. Для приготовления суспензии в вазелиновом масле несколько десятков миллиграммов вещества тщательно растирают в агатовой или яшмовой ступке с двумя-тремя каплями масла. Суспензию наносят тонким слоем на пластинку из бромида калия и покрывают второй пластинкой. Если операцию приготовления образца проводить в сухой камере, то таким образом можно исследовать даже весьма гигроскопичные вещества. Для съемки ИК-спектров поликристаллических порошков их можно прессовать также вместе с избытком бромида калия в таблетки толщиной несколько миллиметров. Для получения таблеток используются специальные вакуумные пресс-формы и давление несколько тонн на 1 см 2. Таблетки с бромидом калия можно использовать для приближенных количественных измерений составов смесей по интенсивностям полос. Следует только учитывать, что при приготовлении таблеток лабильные комплексы могут разлагаться за счет выделяющегося при прессовании тепла. Кроме того, возможен ионный обмен некоторых соединений с бромидом калия, а сильные окислители окисляют бромид-ион до брома. Обычно спектр твердого органического образца заметно зависит от кристаллической модификации, поэтому при работе с твердыми образцами следует заботиться о том, чтобы полиморфная форма образца была всегда одной и той же . Количественный анализ Внутренние стандарты Приготовленные таким образом образцы трудно измерять количественно, так как невозможно ни задать точную концентрацию в пасте, ни количественно нанести ее на определенную площадь окошек кюветы. Чтобы избежать этого затруднения, можно использовать метод внутреннего эталона. Подбирают такой внутренний эталон, который имеет полосы ИК-поглощения в той области, где у образца нет собственных полос поглощения. Определенную смесь внутреннего стандарта и образца смешивают и диспергируют в виде пасты, как указано выше. Отношение оптических плотностей полос поглощения образца и внутреннего эталона является мерой концентрации образца. Часто в качестве внутренних эталонов

20 используют неорганические вещества, так как обычно они имеют простые спектры с узкими полосами, легко размельчаются и образуют суспензии. Для этой цели применяются PbCNS, CaCO 3, додеканитрил, антрацен и стеараты металлов . Дифференциальный метод После того как образец подготовлен для записи спектра, следует выбрать технику измерения. Обычно достаточно измерить высоту пика над базовой линией и связать ее с концентрацией образца. В тех случаях, когда требуется высокая точность или большая чувствительность, полезно использовать дифференциальный метод. При этом в пучок сравнения двухлучевого прибора помещают тщательно приготовленную холостую таблетку или кювету, спектр которой вычитается из спектра образца. В кювету или таблетку сравнения обычно вводят исключаемые компоненты, присутствующие в образце, в таких концентрациях, чтобы их спектры полностью скомпенсировались. Регистрируемый в этих условиях спектр является спектром лишь интересующих нас компонентов без наложения спектров исключаемых компонентов, присутствующих в смеси. Для повышения точности анализа в кювету сравнения можно добавить известное количество определяемого компонента, а интенсивность дифференциального спектра увеличить, увеличивая толщину слоя или повышая усиление прибора. Если требуется определить очень малые количества вещества, то можно использовать так называемый двойной дифференциальный метод, который состоит в том, что спектр образца регистрируется относительно некоторого контрольного вещества, затем образец и кювету сравнения меняют местами и записывают спектр на том же бланке. Измеряя вместе положительные и отрицательные пики (при этом высота их удваивается), получают увеличение чувствительности. При использовании этого метода можно в благоприятных случаях определять десятитысячные доли процента вещества . Значение операций предварительного разделения Чем сложнее состав неизвестного образца, тем меньше возможность успешного проведения идентификации его компонентов путем прямого ИК-исследования, поэтому очень важно использовать перед съемкой ИК-спектров различные способы разделения. Если приходится часто анализировать образцы определенного типа, например пластмассы, душистые вещества или пищевые продукты, то можно разработать простую схему разделения и анализа, по которой можно будет почти полностью идентифицировать

21 составляющие весьма сложных смесей. В этих схемах для разделения смесей можно использовать экстракцию растворителем, адсорбционную хроматографию, ионный обмен, препаративную газо-жидкостную хроматографию с последующей записью ИК-спектров полученных фракций. Подобные аналитические схемы можно использовать для идентификации малых примесей и загрязняющих веществ, для характеристики параллельно образующихся продуктов и др . Техника методов НПВО Сущность метода НПВО Метод НПВО представляет собой разновидность спектроскопии, но его следует отличать от других форм спектроскопии отражения. Спектроскопия, использующая обычное отражение, отличается тем, что излучение падает на поверхность образца и отражается в монохроматор, проходя через ряд оптических элементов. Устройства для этих исследований позволяют работать с постоянными или переменными углами падения. Обычный спектр зеркального отражения не похож на спектр пропускания. Другая распространенная методика спектроскопии отражения имеет дело с тонкими пленками, нанесенными на сильно отражающую поверхность, например из алюминия, и все это устройство помещается в обычную установку для измерения зеркального отражения. Получаемый таким образом спектр похож на обычный спектр поглощения. Этот вид отражательной спектроскопии иногда называют двукратным пропусканием, поскольку излучение проходит через образец, отражается от зеркальной поверхности, проходит образец еще раз и попадает затем в монохроматор. Техника двукратного пропускания довольно широко распространена, но применение ее ограничено теми веществами, которые могут быть приготовлены в виде очень тонких слоев. Она непригодна, если исследуемые образцы имеют очень большую толщину или очень сильно поглощают. Интересующий нас вид отражательной спектроскопии осуществляется в том случае, когда свет падает на образец из оптически более плотной среды (среда с большим показателем преломления) под углом больше критического, т. е. при условиях, когда должно было бы иметь место обычное полное внутреннее отражение. Однако часть падающего излучения проникает в образец и там поглощается в характеристических для образца участках длин волн. В результате этого отражение оказывается не полным, а «нарушенным полным внутренним отражением». Критический угол представляет собой угол падения, при котором угол преломления составляет 90. Величина критического угла падения может быть найдена из равенства

22 : n p sin = n sin (5) где n p и п - показатели преломления кристалла и образца соответственно; - угол падения; - угол отражения. При критическом угле падения угол равен 90, откуда sin = 1. Отсюда легко получить величину критического угла из выражения sin =n/n p, (6) Найдено, что для техники НПВО наиболее удобны четыре высокопреломляющих кристалла; бромидиодид таллия (KRS-5), хлористое серебро (AgCl), иртран-2 и германий. Они перечислены по степени их применимости. Для получения спектра НПВО необходимо, чтобы ИК-излучение прошло в кристалл с большим показателем преломления, отразилось (один или несколько раз) от границы раздела с образцом, имеющим более низкий показатель преломления при угле больше критического и вышло из кристалла в монохроматор. Получаемый спектр НПВО очень похож на обычный спектр поглощения в ИК-диапазоне. По мере увеличения длины волны наблюдаемые полосы поглощения в спектре НПВО становятся более интенсивными, чем соответствующие полосы поглощения в обычном спектре. В этом состоит наиболее заметное различие между спектрами НПВО и спектрами ИК-поглощения, обусловленное зависимостью НПВО от длины волны. Другое различие, менее заметное, заключается в небольшом сдвиге максимумов полос поглощения. Ни одно из этих различий не создает серьезных трудностей при сравнении спектров НПВО со спектрами ИК-поглощения. Когда угол падения приближается к критическому, наблюдаемый спектр НПВО становится весьма посредственным или бедным линиями из-за мешающих эффектов рефракции. Но и при увеличении отклонения от критического угла интенсивность полос поглощения также убывает. Если показатель преломления кристалла приближается к показателю преломления образца, то спектр НПВО становится очень интенсивным, т. е. оптическая плотность полос возрастает. Для получения оптимальных спектров НПВО необходим компромисс между этими факторами. Подбор подходящего кристалла оказывается более важной задачей, чем выбор диапазона углов падения для получения хорошего спектра НПВО. При выборе оптимального угла падения спектроскописты стараются работать при углах, значительно больших критического. Но не при слишком, чтобы спектр был малоинтенсивным и не при столь малых, чтобы спектр НПВО искажался эффектами рефракции.

23 Аппаратура для получения спектров НПВО Многочисленные работы по экспериментальной технике НПВО в значительной мере были направлены на подбор и использование кристаллов различной конфигурации. При этом подбирались условия, и которых можно получить однократное отражение, когда кристаллы представляли собой призму или полуцилиндр, и многократные отражения (до 20 и более раз), когда кристаллам придавалась специальная удлиненная форма Наибольшее количество спектров НПВО было получено на приставках, помещаемых в обычные ИК-спектрометры или спектрофотометры. Приставка состоит из двух систем зеркал: одна из них направляет излучение источника в кристалл под постоянным или переменным углом падения; вторая система зеркал направляет излучение в монохроматор ИК-спектрометра. Кристалл НПВО и держатель образца выполнены таким образом, чтобы обеспечить хороший контакт между кристаллом и поверхностью образца, для чего предусматривается создание некоторого сдавливания. Аналогичные зеркальные системы применяются и в приставках с фиксированным углом, которые в последнее время начинают приобретать широкое распространение. Такая съемная приставка размещается в кюветном отделении спектрометра. Сейчас существуют и серийные специализированные спектрофотометры для получения спектров НПВО. Подбор образцов Для получения удовлетворительного спектра НПВО необходимо подобрать материал кристалла таким, чтобы было обеспечено оптимальное соотношение показателей преломления кристалла и образца, подобрать угол падения и обеспечить хороший контакт на границе раздела между кристаллом и образцом. Последние наиболее важно, так как без хорошего контакта нельзя получить удовлетворительный спектр НПВО. Наилучшие спектры НПВО получаются от образцов, имеющих достаточно ровную плоскую поверхность. Гладкая поверхность таких образцов, как пленки, позволяет обеспечить хороший контакт между рабочей поверхностью кристалла и образцом без порчи поверхности кристалла (что важно для его длительного срока службы). Если образец имеет неровную поверхность, то нет смысла пытаться обеспечить его хороший контакт с кристаллом, применяя, например, большие усилия. ИК-излучение при этом будет только рассеиваться, спектр НПВО не получится, а кристалл либо разрушится, либо, в лучшем случае, потребует переполировки. Недостаточно также, чтобы контакт между кристаллом и образцом осуществлялся в некоторых точках, а не по всей поверхности. Как и в предыдущем случае спектра получить не удастся. В тех случаях, когда поверхность

24 образца нельзя нужным образом подготовить без нанесения ему ущерба, вероятно, вообще следует отказаться от метода НПВО. Для получения спектра пленки, наносимой на кристалл необходимо обеспечить достаточную ее толщину, при которой уже было бы заметно ИК-поглощение. Это означает, что толщина слоя должна быть равна, по меньшей мере, 0,001 мм. В некоторых случаях можно получить спектры НПВО и от порошкообразных образцов, но для этого необходимо, чтобы они сцеплялись с поверхностью кристалла. Таких образцов довольно мало. Удовлетворительный спектр НПВО можно получить для тонко размельченного порошка. Если прессованием порошка образцу можно придать необходимую форму, то это тоже повышает шансы на получение спектра хорошего качества. Работа с растворами и жидкостями ИК-излучение из кристалла может проникать в жидкий раствор на глубину 0,005 0,05 мм. Если анализируемый компонент раствора обладает достаточным поглощением в такой толщине слоя, то можно получить спектр НПВО удовлетворительного качества. Для водных растворов регистрируемый спектр НПВО будет в той мере только спектром воды, насколько глубоко излучение проникает в жидкую среду: при проникновении на 0,05 мм спектр практически будет отсутствовать из-за полного поглощения водой. При подготовке к измерениям спектра НПВО следует убедиться в том, не будет ли происходить химической реакции между исследуемым образцом и кристаллом. При этом может разрушиться кристалл, а спектра получить не удастся .

25 2. Техника пробоподготовки Техника пробоподготовки и измерение спектров пропускания с образцов, спрессованных в тонкие таблетки (на примере KBr) Приготовление таблеток 1. Перетирание порошка Размер кристаллитов в образце сильно влияет на качество получаемых спектров из-за процессов рассеяния излучения. Чтобы избежать эффекта рассеяния, частицы в порошке образца, который будет использоваться для прессования таблетки, должны иметь размер около 1 мкм. Для достижения таких размеров образец должен быть тщательно перемолот в агатовой или яшмовой ступке. Опытные операторы оценивают размер частиц в порошках по тактильным ощущениям. 2. Подготовка прессформы После того, как порошок тщательно перемолот, его, предварительно взвесив и тщательно смешав с KBr, помещают в прессформу. Необходимо отметить, что немаловажную роль играет состояние прессформы она должна быть абсолютно чистой и хорошо отполированной. Пред использованием прессформу протирают этиловым спиртом. Использование ваты и других ворсистых материалов при этом нежелательно, рекомендуется использовать специальные безворсовые салфетки. 3. Прессование Порошок, помещенный в прессформу, непосредственно перед прессованием разравнивают с помощью шпателя для обеспечения равномерности распределения вещества в объеме прессформы во время прессования. Прессформу с порошком и вставленным пуансоном помещают в пресс. Процесс прессования проводится при усилии 6 атмосфер в течение двух минут. Давление с пресформы следует снимать постепенно, так как при быстром снятии давления в образце возможно образование напряжений, которые могут приводить к нежелательному растрескиванию таблеток. После окончания прессования таблетку извлекают из прессформы и помещают в предварительно приготовленный контейнер для хранения образцов. В качестве удобного контейнера для хранения таблеток могут служить конвертики, свернутые из бумаги они удобны в использовании и хранении. 4. Обслуживание прессформы

26 Для приготовления таблеток высокого качества прессформы необходимо регулярно после завершения работы тщательно протирать для удаления остатков вещества с пуансона и стенок прессформы. Для этого рекомендуется использовать этиловый спирт. Появление царапин на рабочих поверхностях прессформы крайне нежелательно, поэтому обращаться с прессформами нужно всегда бережно и аккуратно. Съемка спектров 1. Подготовка прибора к работе Спектрометр необходимо включить заранее (за мин) до начала съемки образцов, чтобы прогреть источник излучения. 2. Съемка фона Пред тем, как приступить к съемке образцов, снимают спектр воздуха в камере спектрометра. Этот спектр впоследствии автоматически будет учитываться при получении спектров образцов. 3. Съемка образца Готовую таблетку закрепляют в держателе для образцов и помещают в спектрометр. Для получения спектра таблетка должна быть достаточно прозрачна, что контролируется по величине энергии, зарегистрированной приемником излучения спектрометра перед началом съемки спектра. Полученные спектры сохраняются в виде таблицы данных для последующей их интерпретации.

27 Техника пробоподготовки и измерение спектров пропускания с образцов в суспензиях (ГХБ, вазелиновое масло) Суспензии Одним из основных способов подготовки твердых образцов для исследований является оправдавшая себя длительной практикой методика приготовления суспензии (взвесей, паст) в вазелиновом масле или гексахлор-бутадиене (ГХБ). Вазелиновое масло представляет собой смесь нормальных насыщенных углеводородов среднего состава С 25. Оно практически не содержит ароматических и ненасыщенных углеводородов, а также других примесей, обладает достаточной вязкостью и подходящим показателем преломления, которые позволяют без особого труда получать удовлетворительные спектры твердых веществ. Суспензию приготавливают путем измельчения и растирания твердого вещества в вазелиновом масле или ГХБ, пока не достигается достаточная дисперсность. Сжимая руками окошки из КВr, между которыми находится слой пасты, добиваются нужной толщины. Затем окошки, закрепленные в металлическом держателе кювет, устанавливают на спектрофотометре и записывают спектр образца в желаемой области длин волн. Простой с виду, процесс приготовления суспензии удовлетворительного качества требует на самом деле больших навыков и умения. Суспензию обычно готовят следующим образом. На стеклянную пластинку кладут 5-10 мг твердого вещества, затем при помощи капельницы наносят каплю масла на середину головки стеклянного пестика и начинают энергично размельчать им вещество. Здесь под «размельчением» подразумевается разрушение агрегатов мелких частиц, из которых состоят кристаллические, гранулированные и порошкообразные вещества. Проделав пестиком около пятнадцати круговых движений по стеклянной пластине, при помощи шпателя из нержавеющей стали собирают всю размельченную суспензию со стекла и пестика на середину пластины и растирают снова. Обычно приготовление суспензии считают законченным после трех таких операций, иногда можно ограничиться двумя, хотя могут оказаться необходимыми и четыре или больше операций. Суспензия может оказаться слишком густой или слишком жидкой, тогда нужно добавить либо масла, либо соответственно твердое вещество. Однако экспериментатор, поработав с различными веществами, вскоре

28 научится чувствовать, в каких соотношениях следует брать масло и твердое вещество для любых образцов. Правильно приготовленная суспензия обычно полупрозрачна в видимом свете. При рассматривании суспензии, сжатой между солевыми окошками до желаемой толщины, не должно быть заметно трещин, зернистости или других неоднородностей пленки. Если неоднородности видны на глаз, то суспензия будет рассеивать коротковолновое излучение. При этом максимумы поглощения и пропускания окажутся искаженными, и ценность такого спектра будет невелика, в худшем случае он будет просто неверным. Толщина пленки суспензии, необходимая для получения удовлетворительного спектра, зависит от поглощательной способности образца. Если самая тонкая пленка, которую можно получить, дает слишком сильный спектр, то суспензию следует разбавить маслом и повторно перемешать. Наоборот, если очень толстый слой дает слишком слабый спектр, то следует добавить больше образца и все повторно перемешать. Обычно суспензии, приготовленные должным образом, дают отличные спектры для качественных целей. Таким образом, наиболее простым и в общем случае удовлетворительным способом приготовления образца с целью получения спектра твердого вещества для качественного анализа является методика суспензий (конечно, если он вообще применим). Однако этот метод имеет и некоторые недостатки. Один из недостатков спектра суспензии в вазелинового масла состоит в том, что в областях собственного поглощения масла трудно или почти невозможно получить данные о поглощении самого образца. Само вазелиновое масло характеризуется поглощением, типичным для насыщенных углеводородов с длинной цепью: очень сильная полоса от 3000 до 2800 см -1 (область 3,5 мкм), сильная полоса около 1460 см -1 (6,85 мкм), полоса средней интенсивности около 1375 см -1 (7,27 мкм) и слабая полоса примерно при 722 см -1 (13,85 мкм). Эти полосы обусловлены валентными и деформационными колебаниями связей в метильных, метиленовых и метиновых группах молекул. Однако эту трудность легко преодолеть; следует лишь приготовить и записать спектр второй суспензии, используя среду, не содержащую атомов водорода. Можно брать гексахлорбутадиен, который не поглощает в тех областях, где вазелиновое масло имеет полосы. Имея суспензии вещества в гексахлорбутадиене и в вазелиновом масле, можно получить полный спектр этого вещества свободный от полос поглощения дисперсионной среды.

29 Шлифование пластин из KBr В качестве материала для окошек кювет наиболее употребительны кристаллы KBr, однако их гигроскопичность приводит к ряду затруднений. В процессе использования они могут мутнеть. Достаточно небольшого содержания воды в исследуемом веществе и органическом растворителе или высокой влажности воздуха, чтобы рано или поздно даже при тщательном уходе окошки помутнели. Для удаления помутнения пластинки из KBr приходится периодически полировать. Полировка пластин из КВr представляет такое простое дело, что каждый серьезный спектроскопист должен овладеть этой методикой. Это дает достаточную экономию, а также является легким физическим упражнением, полезным для специалиста в общем малоподвижной профессии. Шлифовка и полировка пластин может производиться с использованием различных абразивных материалов в зависимости от глубины повреждений. При наличии глубоких повреждений пластинки перед полировкой шлифуют на мелкой наждачной бумаге до удаления крупных царапин. При отсутствии глубоких царапин ограничиваются полировкой пластин на пасте (Cr 2 O 3) с последующей полировкой на ткани (фланель). При этом поверхность ткани с пастой и чистой ткани рекомендуется смачивать этиловым спиртом. Для шлифования и полировки пластин необходимо надеть резиновые перчатки или напальчники, т.к. пластинка в местах соприкосновения с кожей мутнеет. Полировка производится круговыми движениями. Вышеописанная процедура полировки требует, повидимому, некоторой практики, сноровки и внимания к деталям, иначе ровная гладкая пластина может не получиться.


Спектрометрия в инфракрасной области ОФС.1.2.1.1.0002.15 ВзаменГФХ Взамен ст. ГФ XI, вып.1 Взамен ГФ XII, ч.1, ОФС 42-0043-07 Инфракрасные спектры (колебательные спектры) (ИК-спектры) возникают вследствие

01/2016:20224 2.2.24. АБСОРБЦИОННАЯ СПЕКТРОФОТОМЕТРИЯ В ИНФРАКРАСНОЙ ОБЛАСТИ Инфракрасные спектрофотометры применяют для записи спектров в области от 4000 см -1 до 650 см -1 (от 2,5 мкм до 15,4 мкм), а

Спектроскопические методы для исследования (нано)материалов Ирина Колесник Факультет наук о материалах МГУ материалы экспериментального тура IV Всероссийской Интернет олимпиады по нанотехнологиям Гетерополи-

Лекция 4. Инфракрасная (ИК) спектроскопия. Инфракрасная (ИК) спектроскопия один из методов оптического спектрального анализа, основанный на способности вещества избирательно взаимодействовать с электромагнитным

Работа 4.22 Изучение основных характеристик светофильтров Оборудование: набор светофильтров, малогабаритный монохроматор МУМ, цифровой вольтметр В7-22. Введение Светофильтры это приспособления, изменяющие

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Рамановская спектрометрия ОФС.1.2.1.1.0009.15 Вводится впервые Рамановская спектрометрия является экспрессным (1 2 с) и неразрушающим

Физикохимические методы анализа 1 Физико-химические методы анализа 2 Спектральные Вид энергии возмущения Электромагнитное излучение Измеряемое свойство Длина волны и интенсивность спектральной линии в

Лекция 5 Полярография и анодная вольтамперометрия Полярографическим методом изучается процесс присоединения электрона к молекулам (ионам) изучаемого вещества, находящегося в водном растворе. Схема полярографа

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Рентгеновская флуоресцентная спектрометрия ОФС.1.2.1.1.0010.15 Вводится впервые Рентгеновская флуоресцентная спектрометрия метод

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 87 ИССЛЕДОВАНИЕ СПЕКТРОВ ПОГЛОЩЕНИЯ И ОПРЕДЕЛЕНИЕ ТЕПЛОВОГО ЭФФЕКТА

Лекция 14 Взаимодействие света с веществом Сегодня: вторник, 12 ноября 2013 г. Содержание лекции: Дисперсия света Групповая скорость Элементарная теория дисперсии Поглощение света Рассеяние света 1. Дисперсия

Лекция 5 Колебательная спектроскопия Физико-химические основы метода ИК-спектроскопии: Оптическая спектроскопия Инфракрасная спектроскопия (ИК) и спектроскопия комбинационного рассеяния (КР) Структура

Работа 4.20 Изучение поглощения света твердыми и жидкими телами Оборудование: фотоэлектрический колориметр-нефелометр ФЭК-60, набор образцов твердого тела, набор кювет с растворами разной концентрации.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н.Г. ЧЕРНЫШЕВСКОГО» В.И. Кочубей ОПРЕДЕЛЕНИЕ

Спектроскопические методы исследования Общая картина взаимодействия электромагнитного излучения с веществом Диапазоны значений частот и длин волн в спектроскопии Область энергий электромагнитного излучения,

Кафедра нанометрологии Московский физико-технический институт (государственный университет) Лабораторная работа по курсу: Определение химического состава образца газа с помощью ИК-Фурье спектрометра Nicolet

) Под каким углом должен падать пучок света из воздуха на поверхность жидкости, чтобы при отражении от дна стеклянного сосуда (n =,5) наполненного водой (n 2 =,33) свет был полностью поляризован. 2) Какова

ДИДАКТИЧЕСКАЯ ЕДИНИЦА 5: Волновая и квантовая оптика Задание На расстоянии м от лампы энергетическая освещенность небольшого листа бумаги, расположенном перпендикулярно световым лучам, равнялась Вт/м.

КОНТРОЛЬНАЯ РАБОТА 5 ВАРИАНТ 1. 1. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр (λ 1 = 500 нм) заменить красным (λ 2

Рисунок 3 Зависимость удельного расхода электроэнергии турбокомпрессора К500-61-5 от температуры воздуха после промежуточных воздухоохладителей Таким образом, повышение температуры воздуха после промежуточных

Работа А-08 ОПТИЧЕСКИЕ СПЕКТРЫ ПОГЛОЩЕНИЯ ТВЕРДЫХ ТЕЛ ЦЕЛЬ РАБОТЫ: изучить спектры поглощения твердых тел и освоить технику измерения и обработки этих спектров на спектрофотометре. Введение В твердом теле

ЛК 7 Понятие о методах ОНК с помощью комбинационного рассеяния света. Техника комбинационного рассеяния света. Молекулярный анализ по электронным спектрам поглощения. Фотометры и спектрофотометры. Физические

Лабораторная работа 10 Определение материальных потерь в пленочных световодах Цель работы расчет коэффициента экстинкции для пленочного световода с использованием значений его оптических постоянных, измеренных

Вопросы к зачету 1 «Оптика» 1. Перечислите законы отражения света. Как в принципе получить изображение в плоском зеркале? 2. Перечислить законы преломления света. 3. Чем объяснить факт преломления света?

И. В. Яковлев Материалы по физике MathUs.ru Интерференция света Задача 1. Луч лазера с длиной волны λ расщепляется на два. Один луч проходит через прозрачную плёнку толщиной d 1 с показателем преломления

Оптика Волновая оптика Спектральные приборы. Дифракционная решетка В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания)

РАЗДЕЛ 4 СПЕКТРАЛЬНЫЕ ИЗМЕРЕНИЯ Теоретические основы Теоретические основы Спектры испускания Спектры поглощения Спектры пропускания Спектры отражения определяют видимые свойства объекта (яркость, цветовой

Лекция 3. Абсорбционная спектроскопия. Фотоколориметрия и спектрофотометрия. Спектральные методы анализа и исследования основаны на взаимодействии электромагнитных волн с веществом. Излучение направляется

Работа 5.10 Определение ширины запрещенной зоны полупроводников по краю собственного поглощения Оборудование: призменный монохроматор УМ-2, лампа накаливания, гальванометр, сернисто-кадмиевое фотосопротивление,

ИНТЕРФЕРЕНЦИЯ СВЕТА 1. Какой частоте колебаний соответствует длина волны излучения в инфракрасной области (λ 1 = 2,5 мкм) и в ультрафиолетовой (λ 2 = 200 нм) области спектра? 2. Сколько длин волн монохроматического

Физикохимические методы анализа Инфракрасная спектроскопия ОСНОВНЫЕ ОСОБЕННОСТИ МЕТОДА Основная энергетическая характеристика Волновое число, см -1 Является молекулярно-специфичным, что позволяет получать

Раздел 5. Спектроскопические ОИС ЛК 6 Основы абсорбционной спектрофотомерии. Принцип действия инфракрасных спектрофотометров и их применение в промышленных лабораториях. Инфракрасные проточные анализаторы

ЛЕКЦИЯ 11 ИНТЕРФЕРЕНЦИЯ В ТОНКИХ ПЛЕНКАХ. ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ Интерференция при отражении от прозрачных пластинок. Кольца Ньютона. Просветленная оптика. Интерферометры 1. Интерференция при отражении

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Спектрофотометрия в ОФС.1.2.1.1.0003.15 ультрафиолетовой и Взамен ОФС ГФ X, ОФС ГФ XI, видимой областях ОФС 42-0042-07 ГФ XII,

Интерференция световых волн Интерференция возникает при наложении волн, создаваемых двумя или несколькими источниками, колеблющимися с одинаковыми частотами и некоторой постоянной разностью фаз Такие источники

Лабораторная работа 4 Изучение физических основ инфракрасной абсорбционной спектроскопии Цель работы: 1. Изучение физических явлений, лежащих в основе абсорбционной спектроскопии. 2. Изучение принципов

Аналитическая химия 4 семестр, Лекция 14. Модуль 2. Оптические методы анализа. Другие оптические методы. ИКспектрофотометрия. 1. Нефелометрия и турбидиметрия. 2. Рефрактометрия. 3. Спектрометрия диффузного

ЛАБОРАТОРНАЯ РАБОТА 4 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПРИЗМЫ И ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы: с помощью дифракционной решетки определить длины волн излучения в спектре ртутной лампы; определить параметры отражательной

9. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, МАСС- СПЕКТРОМЕТРИЯ, РАССЕЯНИЕ СВЕТА Самый прямой способ определения размеров наночастиц это исследование на просвечивающем электронном микроскопе. Другой способ определения

Поглощение света оптическими фононами. ИК-спектроскопия. Оглавление Качественные соображения...1 Соотношение Лиддейна-Сакса-Теллера...2 Постановка эксперимента и примеры экспериментальных данных...6 Список

Индивидуальное задание N 6 «Волновая оптика» 1.1. Экран освещается двумя когерентными источниками света, находящимися на расстоянии 1 мм друг от друга. Расстояние от плоскости источников света до экрана

Министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

АНАЛИЗ НЕФТЕПРОДУКТОВ МЕТОДОМ ИК-СПЕКТРОСКОПИИ Тестов Д.С., Полотнянко Н.А., Фадейкина И.Н. Государственный университет «Дубна» г. Дубна, Россия ANALYSIS OF PETROLEUM PRODUCTS BY IR SPECTROSCOPY Testov

Лабораторная работа 0. Комбинационное рассеяние света. Составитель и ведущий преподаватель: Лившиц Александр Маркович При освещении вещества монохроматическим излучением происходит рассеяние света. При

Разработка урока с применением ИКТ Урок: «Дифракционная решетка». Цели урока: 1. знакомство с оптическим прибором - дифракционной решеткой; сформировать умения по качественному описанию дифракционной картины

Дисперсия света. Тепловое излучение Лекция 7 Постникова Екатерина Ивановна доцент кафедры экспериментальной физики Дисперсия света Дисперсия света зависимость фазовой скорости света c (показателя преломления

Измерение коэффициентов пропускания различных веществ с помощью спектрометра оптически прозрачных сред Работу выполнили: Талипов Равиль, 632 Гр. Сухова Наталья, 631 Гр. МФТИ 2018 Введение Задача определения

Дифракция, дисперсия, интерференция света 1. При освещении дифракционной решетки монохроматическим светом на экране, установленном за ней, возникает дифракционная картина, состоящая из темных и светлых

Интерференция света 1. Световые волны. Принцип Ферма. Вывод законов отражения и преломления света. 2. Способы получения когерентных световых волн. Интерференция световых волн. 3. Расчет интерференционной

3 3. Гармонический осциллятор, пружинный, физический и математический маятники. Физический маятник. Физическим маятником называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг

1 ИЗУЧЕНИЕ ОПТИЧЕСКОГО ПОГЛОЩЕНИЯ ПОЛУПРОВОДНИКОВ Цель работы: ознакомление с явлением поглощения оптического излучения полупроводником, измерение спектров поглощения кристаллов CdS и GaAs при комнатной

Измерение длины волны красной линии кадмия Майкельсон выполнил первое точное измерение длины волны красной линии кадмия в 1890-1895 гг. (Майкельсон А.А. Исследования по оптике. - М.-Л.: Государственное

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 1. Тепловое излучение и люминесценция Излучение телами электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Самым распространенным является тепловое

Лекция 5 Электронная спектроскопия. Спектроскопия в видимой и ультрафиолетовой (УФ) областях План лекции 1. Вероятности переходов между электронно-колебательновращательными состояниями. Принцип Франка-Кондона.

3 Цель работы: изучение спектра поглощения раствора органического красителя с помощью монохроматора. Задача: измерить коэффициент поглощения органического красителя родамина 6G для некоторых длин волн.

ПРОСТРАНСТВЕННЫЙ ФУРЬЕ-СПЕКТРОМЕТР НА БАЗЕ МИКРОИНТЕРФЕРОМЕТРА ЛИННИКА к.т.н. Штанько А.Е. МГТУ «СТАНКИН» Любой двухлучевой интерферометр, работающий в режиме полос конечной ширины, в принципе может быть

Приставки для ИК-Фурье-спектрометра Agilent Cary 630: сочетание высокой эффективности и универсальности Обзор технической информации Введение Agilent Cary 630 компактный, надежный и удобный в эксплуатации

Волновые свойства света Природа света двойственна (дуалистична). Это означает, что свет проявляет себя и как электромагнитная волна, и как поток частиц фотонов. Энергия фотона ε: где h постоянная Планка,

Лабораторная работа 1 Определение радиуса кривизны поверхности линзы методом колец Ньютона. Цель работы. Цель работы определить радиус кривизны выпуклой сферической поверхности (одной из поверхностей стеклянной

ЛАБОРАТОРНАЯ РАБОТА 4.6. СПИН-ОРБИТАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ И ТОНКАЯ СТРУКТУРА СПЕКТРОВ ИЗЛУЧЕНИЯ Ц е л ь р а б о т ы: знакомство с проявлением спин-орбитального взаимодействия на примере изучения спектров

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

К инфракрасному относят электромагнитное излучение с длинами волн примерно от 800 нм (0,8 мкм) до 10 6 нм (10 3 мкм). С точки зрения использования в анализе, наиболее полезной является средняя область ИК-спектра, т.е. диапазон длин волн 4000-200 см -1 (2500-50000 нм). Если молекула поглощает ИК-излучение, то она переходит из одного колебательного состояния в другое. При обычной температуре химические связи в молекуле не являются жёсткими, а, в результате взаимодействия молекулы с другими молекулами, испытывают постоянные колебания. Представим себе молекулу, состоящую из двух атомов, соединённых одинарной связью, как систему, состоящую из двух сфер, соединённых пружиной, не имеющей массы. В такой системе могут происходить два вида колебаний: валентные , при которых происходит изменение длины связи и деформационные , которые сопровождаются изгибом связи. Молекула, состоящая из n -атомов, теоретически может претерпевать 3n-6 видов колебаний (линейная молекула 3n-5 ), из которых n-1 являются валентными, а 2n-5 - деформационными. Частота колебаний связи зависит от вида колебания, массы атомов (участвующих в образовании связи) и прочности связи. Валентные колебания имеют большую частоту колебаний, чем деформационные колебания тех же связей. В идеальном случае частота валентного колебания описывается уравнением вида:

где - силовая постоянная, характеризующая прочность связи; - приведенная масса атомов, участвующих в образовании химической связи. Таким образом, частота колебания возрастает при повышении прочности связи и уменьшении приведенной массы. ИК-излучение способно влиять только на такие колебания, которые приводят к изменению дипольного момента молекулы. Если частота колебаний образующегося диполя и ИК-излучения, попадающего на него, близки, то взаимодействие между ними может усиливать амплитуду колебаний. Энергия, необходимая для увеличения амплитуды колебаний диполя, поглощается в виде кванта из проходящего потока ИК-излучения. Колебания, приводящие к изменению дипольного момента молекулы и способные приводить к появлению полосы поглощения в ИК-спектре, называют активными в ИК-спектре. Если дипольный момент молекулы в процессе колебания не изменяется, то поглощения ИК-излучения не происходит. По этой причине такие вещества, как O 2 или N 2 не поглощают ИК-излучения. ИК-спектр поглощения представляет собой зависимость степени поглощения электромагнитного излучения от его волновой характеристики. Область ИК-спектра от 4000 до 1350 см -1 называется областью функциональных групп. Отсутствие полос поглощения в данной области, связанных с какой-либо функциональной группой, может служить доказательством отсутствия данной группы в молекуле. Условно область функциональных групп можно разделить на следующие несколько областей:


1. Область валентных колебаний групп:

2. Область валентных колебаний групп:

3. Область «прозрачности» - валентные колебания групп:

4. Область двойной связи - валентные колебания связей:

при этом для первой из перечисленных выше функциональных групп достаточно сильное поглощение происходит в диапазоне 1850-1650 см -1 , для последней функциональной группы наблюдается довольно слабое поглощение около 1650 см -1 . Так, из ИК-спектра циклогексана хорошо видно, что две наиболее интенсивные полосы поглощения в нём принадлежат валентным колебаниям связи С-Н (3100-2990 см -1) и деформационным колебаниям этих связей (1450 см -1). Полосы поглощения, соответствующие валентным (1200-800 см -1) и деформационным колебаниям (менее 500 см -1) связей С-С , значительно менее информативны. Как того и следовало ожидать, в спектре нет полос поглощения, соответствующих, например, валентным колебаниям связей O-H, N-H, C=O, C=C. Область ИК-спектра от 1350 до 750 см -1 называется областью «отпечатков пальцев». Поглощение в этой области может иметь сложный вид, причём отдельные полосы очень трудно отнести к определённому колебанию. Каждое вещество (в том числе и стереоизомеры) имеет в области «отпечатков пальцев» свій индивидуальный характер колебаний.

Рис. 25. ИК-спектр циклогексана.

Для измерения аналитического сигнала в ИК-спектроскопии используют ИК-спектрометры. При этом последние в свою очередь делятся на два типа: диспергирующие и недиспергирующие. К диспергирующим приборам относятся,инапример, сканирующие ИК-спектрометры, а к недиспергирующим - ИК-спектрометры с Фурье-преобразованием. В ИК-спектрометрах применяется двухлучевая схема: поток ИК-излучения расщепляется с помощью специального зеркала на два одинаковых потока, один из которых проходит через рабочую кювету, а второй является потоком сравнения. В ИК-спектрометрах монохроматор, для того чтобы уменьшить рассеяние ИК-излучения, расположен не перед кюветой, а после неё. Потоки излучения с помощью вращательного сегментарного зеркала (прерывателя, модулятора) попеременно направляются то на рабочую кювету, то на кювету сравнения. В качестве источников ИК-излучения используют либо штифт Нернста, либо глобар - небольшой стержень выполненный из SiC. Штифт Нернста и глобар нагреваются электрическим током до температуры 1500 0 С. ИК-спектрометр, вне зависимости от его типа снабжён кюветами, которые представляют собой две пластинки (два окна), изготовленные из NaCl, AgCl, KBr, LiF и других материалов прозрачных в ИК-области. Пластинки закрепляются в металлическом держателе. Ширина кюветы регулируется с помощью тефлоновой прокладки или микрометрического винта. Исследуемую жидкую пробу вводят в пространство между пластинками с помощью шприца. Исследуемыми объектами в ИК-спектроскопии могут быть газы, жидкости или твёрдые вещества. Спектры газов или жидкостей можно получить при введении образца в вакуумированную кювету. Жидкости (без растворителя) помещают в виде тонкой плёнки (0,01 мм или меньше) между двумя солевыми пластинками без прокладки. Растворы помещают в кюветы толщиной 0,1-1,0 мм. Наиболее часто используемыми растворителями являются CCl 4 , CHCl 3 , CS 2 и др. Воду и некоторые низкомолекулярные спирты нельзя применять в качестве растворителя при использовании кювет из NaCl и других водорастворимых материалов. При исследовании твёрдых веществ обычно получают их суспензии или пасты в различных иммерсионных средах (вазелиновое масло, нуйол, перфторалканы и др.) либо смешивают твёрдое вещество с KBr и прессуют полученную смесь в тонкую прозрачную таблетку, которую помещают прямо в кюветное отделение. Монохроматором в диспергирующем ИК-спектрометре служит дифракционная решётка или призма. Материалом для их изготовления является NaCl, KBr и другие вещества, прозрачные в ИК-области. Принцип детектирования ИК-излучения заключается в измерении изменения температуры зачернённого материала, расположенного на пути потока. ИК-спектроскопия используется преимущественно для установления строения и идентификации органических (реже неорганических) соединений, в том числе и лекарственных веществ. В плане качественного анализа ИК-спектры являются значительно более информативными, чем спектры поглощения в УФ- или видимой области. Большинство функциональных групп не обладают собственным поглощением в УФ- и видимой области, тогда как в ИК-спектрах они имеют собственные полосы поглощения. Кроме того, в УФ-спектре отдельные полосы поглощения часто сливаются друг с другом, что затрудняет его интерпретацию. Обнаружение и идентификация веществ методом ИК-спектроскопии может проводиться следующим образом: обнаружение отдельных функциональных групп по характеристическим полосам поглощения, сравнение ИК-спектров исследуемого соединения и стандартного образца, идентификация неизвестного соединения с помощью атласа или компьютерной библиотеки ИК-спектров. В количественном анализе ИК-спектроскопия используется значительно реже, чем спектроскопия в УФ- и видимой области. Это связано с тем, что чувствительность данного метода анализа существенно ниже, а воспроизводимость хуже. Количественный анализ, как и в других абсорбционных спектроскопических методах, основан на законе Бугер-Ламберта-Бера. Концентрацию вещества в ИК-спектроскопии определяют методом градуировочного графика.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ПИЩЕВОЙ БИОТЕХНОЛОГИИ И ТОВАРОВЕДЕНИЯ

Р е ф е р а т

Инфракрасная спектроскопия

Выполнил: студент группы 11ТЭ,

факультета пищевой биотехнологии и товароведения

Лежепеков И. С.

Научный руководитель :

Климова Н.В.

Орел, 2009г

Введение…………………………………………………….3

    Принцип метода…………………………………………3

    Теоретические основы метода………………….............4

    Приборы, аппаратура……………………………………6

    Применение……………………………………………...10

Заключение…………………………………………………12

Список использованной литературы………………………13

Приложение

Введение.

Современное производство пищевых продуктов гарантированного качества требует использования хорошо воспроизводимых и точных экспресс-методов контроля показателей состава и свойств. Достижение стабильного высокого качества выпускаемой продукции неразрывно связано с организацией своевременного контроля качества сырья и полуфабрикатов на всех этапах технологического процесса. В этой связи, оснащение производственных лабораторий приборами экспресс-контроля позволяет своевременно реагировать на любое отклонение технологических параметров, основным преимуществом приборного контроля является оперативность. К таким методам оперативного анализа следует, безусловно, отнести широко распространенный во многих странах мира метод спектроскопии.

Метод ИК-спектроскопии играет важнейшую роль в идентификации химических и органических веществ, благодаря тому, что каждое химическое соединение имеет неповторимый ИК-спектр

1.Принцип метода

Инфракрасная спектроскопия (ИК спектроскопия), раздел молекулярной оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, т.е. в диапазоне длин волн от 10 -6 до 10 -3 м. ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Основные характеристики спектра ИК-поглощения: число полос поглощения в спектре, их положение, определяемое частотой (или длиной волны), ширина и форма полос, величина поглощения - определяются природой (структурой и химическим составом) поглощающего вещества, а также зависят от агрегатного состояния вещества, температуры, давления и др Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом. строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Инфракрасная спектроскопия дает очень важную информацию о частотах колебаний ядер, зависящих от строения молекул и от прочности валентных связей. Частоты колебаний определенной пары химически связанных атомов (валентных колебаний), обычно лежат в определенных пределах. Так, например, частоты колебаний С–Н имеют различные диапазоны, зависящие от остальных связей атомов углерода, что часто позволяет определять наличие соответствующих групп в органическом соединении.

2. Теоретические основы метода

Атомы в молекуле испытывают непрерывные колебания, а сама молекула вращается как целое, поэтому у нее возникают новые энергетические уровни, отсутствующие в изолированных атомах Молекула может находиться в нескольких энергетических состояниях с большей (E 2) или меньшей (E 1) колебательной энергией. Эти энергетические состояния называют квантованными. Поглощение кванта света с энергией Е, равной E 2 – E 1 , переводит молекулу из низшего энергетического состояния в более высокое. Это называют возбуждением молекулы.

В результате атомы, связанные друг с другом в молекуле, начинают более интенсивно колебаться относительно некоторых исходных положений. Если рассматривать молекулу как систему из атомов-шариков, сцепленных между собой пружинками, то пружинки сжимаются и растягиваются, вдобавок изгибаются.

Хотя ИК-спектр является характеристикой всей молекулы, оказывается, что некоторые группы атомов имеют полосы поглощения при определенной частоте независимо от структуры остальной части молекулы. Эти полосы, которые называют характеристическими, несут информацию о структурных элементах молекулы.

Имеются таблицы характеристических частот, по которым многие полосы ИК-спектр могут быть связаны с определенными функциональными группами, входящими в состав молекулы (Приложение). Характеристическими будут колебания групп, содержащих легкий атом водорода (С–Н, О–Н, N–Н), колебания групп с кратными связями (С=С, С=N, С=O) и т. д. Такие функциональные группы проявляются в диапазоне спектра от 4000 до 1600 см –1 .

Область спектра от 1300 до 625 cм –1 известна как область «отпечатков пальцев». Сюда попадают полосы поглощения, отвечающие колебаниям групп С–С, С–О, С–N, а также деформационные колебания. В результате сильного взаимодействия этих колебаний отнесение полос поглощения к отдельным связям невозможно. Однако весь набор полос поглощения в этой области является индивидуальной характеристикой соединения. Совпадение всех полос неизвестного (исследуемого) вещества со спектром заведомо известного эталона является прекрасным доказательством их идентичности. Параметрами молекулярных моделей служат массы составляющих систему атомов, длины связей, валентные и торсионные углы, характеристики потенциальной поверхности (силовые постоянные и др.), дипольные моменты связей и их производные по длинам связей и др.

Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимодействия, характер химических связей, распределение зарядов в молекулах, фазовые превращения, кинетику химических реакций, регистрировать короткоживущие (время жизни до 10 -6 с) частицы, уточнять отдельные геометрические параметры, получать данные для вычисления термодинамических функций и др.

Необходимый этап таких исследований - интерпретация спектров, т.е. установление формы нормальных колебаний, распределения колебательной энергии по степеням свободы, выделение значимых параметров, определяющих положение полос в спектрах и их интенсивности. Расчеты спектров молекул, содержащих до 100 атомов, в том числе полимеров, выполняются с помощью ЭВМ. При этом необходимо знать характеристики молекулярных моделей (силовые постоянные, электрооптические параметры и др.), которые находят решением соответствующих обратных спектральных задач или квантово-химическими расчетами. И в том, и в другом случае обычно удается получать данные для молекул, содержащих атомы лишь первых четырех периодов периодической системы.

3. Приборы, аппаратура

Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.) и дифракции решетки. Последовательное выведение излучения различных длин волн на выходную щель и приемник излучения (сканирование) осуществляется поворотом призмы или решетки.

Работа прибора по двух лучевой схеме основана на нулевом методе. Радиация от источника излучения 1 направляется с помощью зеркал 2 - 5 по двум каналам: в одном канале (I) помещается исследуемый образец (6), в другом (II) - фотометрический клин (7) и образец сравнения (8).

С помощью прерывателя (9) пучки света из каналов I и II попеременно проходят через диспергирующую систему монохроматора, образуемую призмой 10 из солей LiF, NaCl или KBr, разлагаются в спектр и поступают на приемник радиации болометр. Когда интенсивность пучков в обоих каналах одинакова, на болометр поступает постоянная тепловая радиация и сигнал на входе усилителя не возникает. При наличии поглощения, на болометр падают лучи разной интенсивности и на нем возникает переменный сигнал. Этот сигнал после усиления смещает фотометрический клин, сводя до нуля разность поглощения образца и фотометрического клина. Фотометрический клин механически связан с пером, перо регистрирует величину поглощения.

Оптическая схема.

Источники излучения - накаливаемые электрическим током стержни из различных материалов. Приемники: чувствительные термопары, металлические и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда которых приводит к нагреву газа и изменению его давления, которое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой. Достоинства приборов классической схемы: простота конструкции, относительная дешевизна.

Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой ИК-области; сравнительно невысокая разрешающая способность длительная (в течение минут) регистрация спектров.

Фурье-спектрометр

В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков.

Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармоничных составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ. Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0,001 см 1). Недостатки: сложность изготовления и высокая стоимость.

Все спектрофотометры снабжаются ЭВМ, которые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра растворителя), изменение масштаба записи, вычисление экспериментальных спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для ИК спектрофотометров изготовляют из прозрачных в ИК-области материалов. В качестве растворителей используют обычно ССl 4 , СНСl 3 , тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют специальные защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом. В случае слабо поглощающих веществ (разреженные газы и др.) применяют многоходовые кюветы, в которых длина оптического пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал.

Большое распространение получил метод матричной изоляции, при котором исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается, и спектр получается более контрастным.

Применение специальной микроскопической техники позволяет работать с объектами очень малых размеров (доли мм). Для регистрации спектров поверхности твердых тел применяют метод нарушенного полного внутреннего отражения. Он основан на поглощении поверхностным слоем вещества энергии электромагнитного излучения, выходящего из призмы полного внутреннего отражения, которая находится в оптическом контакте с изучаемой поверхностью.

4. Применение

Инфракрасная спектроскопия широко применяют для анализа смесей и идентификация чистых веществ. Количественный анализ основан на зависимости интенсивности полос поглощения от концентрации вещества в пробе. При этом о количестве вещества судят не по отдельным полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значительном перекрывании последних.

Для идентификации новых веществ (молекулы которых могут содержать до 100 атомов) применяют системы искусственного интеллекта. В этих системах на основе спектроструктурных корреляций генерируются молекулы структуры, затем строятся их теоретические спектры, которые сравниваются с экспериментальными данными. Исследование строения молекул и других объектов методами инфракрасной спектроскопии подразумевает получение сведений о параметрах молекулярных моделей и математически сводится к решению точки назначения обратных спектральных задач. Решение таких задач осуществляется последовательным приближением искомых параметров, рассчитанных с помощью специальной теории спектральных кривых к экспериментальным.

ИК-спектры измеряют для газообразных, жидких и твердых соединений, а также их растворов в различных растворителях. Некоторые области применения ИК спектроскопии

Химия и нефтехимия .
Качественный и количественный анализ сырья, промежуточных и конечных продуктов синтеза. Фракционный и структурно-групповой состав нефтепродуктов. Анализ топлив: эфиры, спирты, ароматика, октановое число. Фурье-спектрометры могут быть использованы для экспресс-анализ нефтей, газоконденсатов, природного газа и продуктов их переработки.

Химия полимеров.
Анализ сополимеров. Синтетические каучуки: состав, структурные характеристики. Анализ модифицирующих добавок: пластификаторы, антиоксиданты.

Фармацевтическая промышленность.
Определение подлинности субстанций по ИК-стандартам, контроль качества лекарственных форм и сырья.

Газовый анализ. Анализ многокомпонентных газовых смесей.
Контроль качества продукции газовой промышленности, анализ состава и влажности природного газа.

Электронная промышленность.
Контроль качества полупроводникового кремния и параметров тонких слоев. Анализ состава технологических газов.

Пищевая и парфюмерная промышленность.
Экспрессный контроль сырья и готовой продукции: содержание белков, клетчатки, жира, влаги.

Экологический контроль.
Контроль нефтепродуктов в воде и почве. Контроль атмосферного воздуха, воздуха рабочей зоны и выбросов промышленных предприятий.

Криминалистический, судебно-медицинский и биоклинический анализ.
Качественный и количественный анализ природных веществ и продуктов синтеза. Идентификация наркотиков, ОВ и ВВ. Анализ следовых остатков веществ.

Заключение

Метод инфракрасной спектроскопии дает возможность с высокой вероятностью предсказывать качественный количественный состав химических соединений. Современные приборы позволяют осуществлять процедуру измерения этих показателей с достаточной точностью и высокой воспроизводимостью результатов измерений.

Основными достоинствами данного метода являются

1.значительное сокращение времени на проведение анализа;

2. существенная экономия энергоресурсов;

3.приборы не требуют применения дорогостоящих расходных материалов и химических реактивов;

4. гораздо менее жесткие требования по специальной подготовке предъявляются к обслуживающему персоналу, производящему рутинные измерения (по сравнению с их коллегами, осуществляющие традиционные лабораторные методы анализа).

Список использованной литературы.

1. Беллами Л., Инфракрасные спектры молекул, пер. с англ., М., 1957;

2. Кросс А., Введение в практическую инфракрасную спектроскопию, пер. с англ., М., 1961;

3. Казицына Л.А., Куплетская Н.Б. Применение УФ, ИК, ЯМР и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979, 240 с.;

4. Сильверстейн Р., Басслер Г., Моррил Т. Спектрометрическая идентификация органических соединений. М.: Мир, 1977, 590 с. спектроскопии в химии, пер. с англ., М., 1959;

5. Чулановский В. М., Введение в молекулярный спектральный анализ, 2 изд., М.-Л., 1951.

Приложение

Таблица «Частоты характеристических колебаний с участием одинарных связей»

Отнесение и примечания

С-С связей. Обычно наблюдается несколько полос. Для целей идентификации не применяется

ν as (C–О–C) в ациклических эфирах

ν as (C–О–C) в алкилариловых и алкилвиниловых эфирах

ν(C–О) соответственно в первичных, вторичных и третичных спиртах, указания ориентировочны

ν(C–О) в фенолах

ν(C–N) в ароматических аминах и амидах

ν(C–N) в алифатических аминах и амидах

ν(C–N) в нитросоединениях

В монофторзамещенных

В ди- и полифторзамещенных. Чем выше степень замещения, тем выше частота

В монохлорзамещенных. В полихлорзамещенных выше - до 800 см -1

В ароматических соединениях

Наблюдается наряду с δ(СН 3) при 1360 см -1

1430
1115 ± 25

оч.с
оч.с

Точное отнесение неизвестно

в алифатических эфирах

Таблица ХАРАКТЕРИСТИЧЕСКИЕ ЧАСТОТЫ КОЛЕБАНИЙ
НЕКОТОРЫХ ГРУПП

Группа (тип колебаний)

Волновое число, см –1

O–H (валентные)

N–H (валентные)

C–H (валентные)

C C (валентные)

C=O (валентные)

C=N (валентные)

C=C (валентные)

N–H (деформационные)

C–H (деформационные)

O–H (деформационные)

Инфракрасные спектры органических соединений

ИК-спектр н-гексана СН 3 (СН 2 ) 4 СН 3

ИК-спектр гексена-1 СН 2 =СН(CH 2 ) 3 СН 3

ИК-спектр гексанола-2 СН 3 (CH 2 ) 3 СН(ОН)СН 3

ИК-спектр гексанона-2 СН 3 (CH 2 ) 3 С(О)СН 3

ИК-спектр толуола СН 3

Задача. Какому из приведенных ниже соединений принадлежит ИК-спектр, показанный на рис Объясните ваш выбор.




ИК-спектр неизвестного соединения

Решение. В области 1800–1650 см –1 поглощение отсутствует, поэтому соединение не содержит С=О-группы. Из двух остающихся веществ – фенола и бензилового спирта – выбираем спирт, т. к. в спектре есть полоса  C–H =2950–2850 см –1 группы СН 2 (углерод в состоянии sp 2 -гибридизации).