Многообразие и единство элементарных частиц. Проблема их классификации. Некоторые проблемы физики элементарных частиц и постулат гильберта Проблема структуры элементарных частиц

Систематика элементарных частиц. Суперэлементарные частицы. Основная трудность, которая возникает при определении понятие элементарной частицы связано с тем, что в настоящее время таких частиц оказывается очень много значительно больше, чем атомов химических элементов.

Недавно были открыты частицы в 10 раз более тяжлые, чем протон, и приблизительно с такой же массой, как у ядра бора. Отчаявшись выявить какую либо иерархию в разрастающемся множестве равноэлементарных объектов, некоторые физики выдвинули идею бутстрапа шнуровки, или ядерной демократии, согласно которой каждая элементарная частица состоит из всех других частиц точнее, структура каждой элементарной частицы определяется взаимодействиями всех других частиц.

Однако эта идея не устраняет чувства удовлетворнности из за слишком большого числа наипростейших сущностей последовательная формулировка идеи бутстрапа, напоминающая чем то концепцию Демокрита приводит к выводу о бесконечном числе элементарных объектов. Структура микрообъектов в теории бутстрапа принимает относительный смысл что - то вроде особой системы координат, которую можно выбрать различным образом. Определение элементов структуры становится весьма неоднозначным.

Так как одну и туже частицу можно различными способами составить из других частиц. Более того, остатся неясным, можно ли вообще на этом пути сформулировать точную замкнутую систему уравнений, определяющую различные свойства, в том числе и структуру элементарных частиц. Теоретиками анализировались лишь очень грубые модели бутстрапа, учитывающие взаимосвязь всего двух трх сортов частиц, и, хотя в ряде случаев были получены обнадживающие качественные результаты, попытки их уточнения сразу же наталкиваются на огромные трудности.

Идею бутстрапа нельзя считать удовлетворительным решением проблемы наипростейших элементов. Значительно более плодотворным оказался путь объединения частиц в замкнутые группы мультиплеты, члены каждой из которых могут трактоваться как различные состояния одной и той же частицы. Руководящим принципом при этом служит выявление симметрий в свойствах различных частиц.

Такой групповой подход, использующий хорошо разработанный математический аппарат теории групп, является дальнейшим развитием формализма зарядовых изотопических мультиплетов. Большое значение имело открытие так называемой унитарной симметрии, позволившее объединить изотопические мультиплеты обычных и странных частиц в единые октеты и декаплеты. Учт спинов дал возможность построить ещ более сложные семейства частиц унитарные мультиплеты мезонов объединились в семейство, состоящее из 35 частиц 35 - плет, а октет и декаплет барионов в семейство из 56 элементов 56 - плет. Дальнейшее разработка систематики частиц связана с идеей кварков.

Выяснилось, что отдельные унитарные мультиплеты не являются совершенно изолированными друг от друга, а связаны строгими правилами симметрии. И самым поразительным было то, что эти правила предсказывали существование частиц с дробными электрическими зарядами кварков. Вот эти то частицы на современном уровне развития науки действительно можно считать самыми элементарными, потому что из них могут быть построены вс остальное взаимодействующие частицы иногда простым сложением, как атомные ядра из протонов и нейтронов, а иногда рассматривая их как возбужднные состояния уже построенных частиц и в то же время сами кварки нельзя построить из других элементарных частиц. В этом смысле кварки существенно отличаются от всех других частиц, среди которых, как уже отмечалось, невозможно выделить какие либо более элементарные строительные элементы.

Кварки можно рассматривать как следующий, более глубокий, суперэлементарный уровень организации материи и с точки зрения величины дефекта масс, то есть плотности из упаковки внутри протонов, мезонов и других менее элементарных объектов.

С позиции теории кварков структурный уровень элементарных частиц это область объектов, состоящих из кварков и антикварков и характеризуемых большим дефектом масс в отношении любых их распадов и виртуальных диссоциаций.

Вместе с тем, хотя кварк и является самой простейшей известной сегодня частицей, он обладает очень сложными свойствами. От всех других известных нам частиц кварк отличается не только дробным электрическим зарядом, но и дробным барионным числом. Среди других элементарных частиц он выглядит неким кентавром по своим свойствам он одновременно и мезон, и барион. Первоначально считалось, что кварк имеет три состояния два из них различаются лишь величиной электрического заряда, а в третьем состоянии кварк проявляется как странная частица.

Однако после открытия семейств шармированных очарованных частиц к трм состояниям кварка пришлось добавить четвртое шармом. На самом большом мире ускорителе протонов в Батавии, близ Чикаго, была обнаружена новая удивительная частица - -мезон. Его масса значительно превосходит массу нуклона, а свойства таковы, что его приходится рассматривать как слипшиеся кварк и антикварк. При этом приходится допустить, что кварк и антикварк обладают ещ одним, пятым по счту состоянием.

Для квантового числа, характеризующего это состояние, ещ нет даже общепринятого названия чаще всего его называют прелестью кварка или соответствующим английским термином бьюти. Пять квантовых степеней свободы кварка принято называть его ароматом некоторые авторы предпочитают говорить о пяти степенях вкуса кварка. Но и эти не исчерпывается перечень свойств кварка. Анализ экспериментальных данных привл к выводу, что каждый из пяти ароматов вкусов кварка имеет три цвета, то есть каждое из пяти состояний кварка расщеплено ещ на три независимых состояния, характеризуемых величиной специфического квантового числа цвета.

Цвет у кварка изменяется при испускании или поглощении им глюона кванта промежуточного поля, склеивающего кварки и антикварки в мезоны и барионы. Можно сказать, что глюонное поле это поле цвета, его кванты переносят цвет. Термин глюоны происходит от английского слова glue клей. В настоящее время идея суперэлементарных частиц кварков буквально пронизывают физику энергий.

С их помощью объясняется так много экспериментальных данных, что физику просто невозможно обойти без этих удивительных частиц, так же как, например, химику без атомов и молекул. По мнению большинства физиков, если кварки не существуют в природе как реальные объекты, то это само по себе являлось бы поразительной загадкой. И вместе с тем кварки никогда не наблюдались в чистом виде, хотя, с тех пор как они были введены в теорию, прошло почти два десятилетия.

Все многочисленные попытки обнаружить кварки или глюоны в свободном состоянии неизменно заканчиваются неудачей. Строго говоря, глюоны и кварки остаются пока хотя вероятными, но вс же гипотетическими объектами. В том, что кварки и глюоны это физические объекты, а не просто удобный феноменологический способ описания на привычном для нас корпускулярном языке каких то ещ непонятных аспектов структуры элементарных частиц, убеждают косвенные опыты. Прежде всего это эксперименты по зондированию протонов в нейтрон с помощью очень быстрых электронов и нейтрино, когда налетающая частица рассеивается отскакивает, сталкиваясь с одним из находящихся внутри частицы мишени кварков. С учтом кварков список сильно взаимодействующих суперэлементарных частиц сведтся к трм частицам кварку, антикварку и связывающему их глюону.

К ним следует добавить ещ приблизительно десяток наипростейших частиц других типов, структура которых пока ещ не проявляется в эксперименте квант электромагнитного поля фотон, уверенно предсказываемый теоретиками гравитон и семейство лептонов.

Заключение. За прошедшие года положение в теории элементарных частиц существенно изменилось. Были открыты слабые нейтральные токи, приводящие к таким эффектам, как рассеяние мюонного нейтрино на электронах. Открыты, начиная с J-мезона, целая группа элементарных частиц со временем жизни, в тысячу раз превышающим время жизни резонансов. Фактически уже сейчас нужно эти частицы включить в таблицу относительно стабильных элементарных частиц.

Значительны успехи в теории элементарных частиц. Единая теория слабых и электромагнитных взаимодействий получила солидное экспериментальное подтверждение, хотя по-прежнему не может считаться с несомненностью достоверной. Кварковая модель строения адронов получает вс новые и новые экспериментальные подтверждения. После многих лет застоя большой прогресс достигнут в теории сильных взаимодействий, которые теперь рассматриваются как межкварковые взаимодействия.

Очень вероятно, что подлинно элементарными частицами, неделимыми уже дальше, являются лептоны и кварки. Вс огромное множество адронов построено из кварков. Модель четырх цветных кварков и чтырх лептонов позволяет в общих чертах понять структуру материи. Учные вплотную подошли к решению новой проблемы, проблемы структуры элементарных частиц. При бомбардировке протонами высокой энергии неподвижной мишени обнаружены сверхтяжелые нейтральные мезоны, названные ипсилонами с массой порядка 9,4 ГэВ. Найдено три модификации этих мезонов с близкими массами.

Чтобы включить ипсилоны в рамки кварковой модели, надо предположить, что существуют кварки более массивные, чем с-кварк. Для сохранения кварк-лептонной симметрии требуется введение двух новых кварков, соответствующие паре -лептон, -нейтрино. Эти кварки уже получили наименование топ вершина по-английски и боттом дно. Итак, с увеличением энергии сталкивающихся частиц обнаруживается рождение новых вс более и более тяжлых частиц.

Это усложняет и без того непростую картину мира элементарных частиц. Появляются новые проблемы, хотя множество старых проблем остатся нерешнными. Вероятно, основной нерешнной проблемой следует считать проблему кварков могут ли они быть свободными или же пленение их внутри адронов является абсолютным. Если же кварки принципиально не могут быть выделены и обнаружены в свободном состоянии, то как убедиться, что они с несомненностью существуют Далее остатся недоказанным экспериментально существование промежуточных векторных бозонов W , W- и W0, столь необходимых для уверенности в справедливости единой теории слабых и электромагнитных взаимодействий.

Несомненно, что выяснение строения элементарных частиц будет представлять собой столь же значительный шаг, как и открытие строения атома и ядра.

Конец работы -

Эта тема принадлежит разделу:

Становление физической картины мира от Галилея до Эйнштейна

Функциональное значение такого рода суммарного знания видится в обеспечении синтеза знания, связи различных разделов естествознания. При этом есть расхождения понимания того, для чего необходим синтез ь Одни.. Это различие в понимании функций картины мира в свою очередь ведет к расхождению в самом подходе к е анализу В первом..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:


Уильям Гильберт сформулировал примерно 400 лет назад постулат, который можно считать главным постулатом естественных наук . Несмотря на то, что в наше время невозможно найти исследователя, который был бы не согласен с эти утверждением, целый ряд современных физических теорий не удовлетворяют этому принципу .

В физике микромира существует несколько общепринятых моделей, которые также не удовлетворяют постулату Гильберта. Эти модели не дают возможности вычислить основные характерные параметры, такие как массы и магнитные моменты элементарных частиц. В данной статье рассмотрен альтернативный подход к решению этой проблемы.

Рассмотрен новый подход к проблеме природы ядерных сил. Показано, что притяжение в паре протон – нейтрон может возникать за счёт обмена релятивистским электроном. Оценка энергии такого обмена согласуется с экспериментальным значением энергии связи некоторых лёгких ядер. Нейтрон при этом рассматривается как составная частица, состоящая из протона и релятивистского электрона, что позволяет предсказать его массу, магнитный момент и энергию его распада.

В рамках стандартной максвелловской теории электромагнитного поля показано, что имеется возможность возбудить в пустом пространстве (эфире) магнитный γ-квант (всплеск магнитного поля), лишённый электрической составляющей и обладающий спином ħ  / 2. Характерной особенностью такого магнитного γ-кванта является слабость его взаимодействия с веществом, которое на много порядков меньше, чем у электромагнитной волны. Эти его свойства позволяют предполагать, что магнитный γ-квант можно отождествить с нейтрино. На этом основании удаётся по-новому взглянуть на природу π-мезона, μ-мезона и λ-гиперона, вычислив их массы и магнитный момент.

1. Главный постулат естественных наук.

1.1. Постулат Гильберта и современная физика.

2. Протон и нейтрон.

2.1. Протон и нейтрон в кварковой модели Гелл-Манна.

2.2. Модель протона, состоящего из кварков с целочисленным зарядом.

2.3. Физические свойства нейтрона.

2.4. Структура нейтрона.

2.4.1. Электромагнитная модель нейтрона.

2.4.2. Основные параметры нейтрона.

2.5. Обсуждение.

3. О природе ядерных сил.

3.1. Молекулярный ион водорода.

3.2. Дейтрон.

3.3. Лёгкие ядра.

3.3.1. Ядро 3 2 He.

3.3.2. Ядро 4 2 He.

3.3.3. Ядро 6 3 Li.

3.4. Обсуждение.

4. Нейтрино и мезоны.

4.1. Нейтрино.

4.2. Мезоны.

4.3. Возбуждённое состояние с S = 0.

4.4. Возбуждённое состояние с n = 2 и S = ħ  / 2.

5. Заключение.

1. Главный постулат естественных наук

Нашим современникам, уровень образования которых соответствует развитию наук в XXI веке, может показаться, что средневековая наука была сосредоточена в теологии, астрологии и алхимии. Но это совершенно не так. Средневековье было временем разработки основ современной науки.

Средневековый учёный Уильям Гильберт (1544...1603) ввёл в научный обиход понятия электрического и магнитного полей, сделав первый шаг к пониманию природы электромагнетизма. Он первым попытался объяснить природу магнитного поля Земли. Но при этом кажется, что самым важным его вкладом в науку является разработанный им принцип, ставший главным принципом современных естественно-научных исследований* .

* Можно предполагать, что идея этого принципа, как говорится, витала в воздухе среди образованных людей того времени. Но нашёл свою формулировку, дошедшую до нас, этот принцип благодаря У. Гильберту.

Принцип Гильберта формулируется просто:

Все теоретические построения, претендующие быть научными, должны быть проверены и подтверждены экспериментально.

Кажется, что среди наших современных учёных нет никого, кто возражал бы против этого. Однако и в ХХ веке был создан целый ряд научных построений, которые были приняты научным сообществом и до сих являются доминирующими в своих областях знания, но при этом они не удовлетворяют принципу Гильберта.

1.1. Постулат Гильберта и современная физика

Следует подчеркнуть, что в подавляющем большинстве современные теоретические модели адекватно и точно отражают свойства вещества и законы Природы, поскольку на всех этапах построение этих теорий ведётся в полном соответствии с принципом Гильберта.

Но в ряде случаев модели, разработанные теоретиками, оказались неверными .

Рассмотрим некоторые проблемы микромира, при решении которых был нарушен принцип Гильберта.

2. Протон и нейтрон

2.1. Протон и нейтрон в кварковой модели Гелл-Манна

Создаётся впечатление, что специалисты по физике элементарных частиц сначала исходили из предположения, что при сотворении мира каждой элементарной частице индивидуально подбирались подходящие параметры: заряд, спин, масса, магнитный момент и т.д.

Гелл-Манн несколько упростил эту работу. Он разработал правило, согласно которому набор кварков определяет суммарный заряд и спин формируемой элементарной частицы. Но массы и магнитные моменты этих частиц под это правило не подпадают.

Рис. 1. Кварковое строение протона и нейтрона по Гелл-Манну. Заряды кварков подбираются так, чтобы превращение нейтрона в протон осуществлялось заменой одного d-кварка на u-кварк. На предсказание масс и магнитных моментов протона и нейтрона модель Гелл-Манна не претендует

Кварковая модель Гелл-Манна предполагает, что кварки, из которых состоят все элементарные частицы (за исключением самых лёгких), должны обладать дробным (равным 1/3 e или 2/3 e ) электрическим зарядом.

В 60-е годы после формулирования этой модели многие экспериментаторы пытались найти частицы с дробным зарядом. Но безуспешно.

Для того чтобы это объяснить было предположено, что для кварков характерен конфайнмент, т.е. свойство, запрещающее им как-либо проявлять себя в свободном состоянии. При этом понятно, что конфайнмент выводит кварки из подчинённости принципу Гильберта. В таком виде модель кварков с дробными зарядами претендует на научность без подтверждения данными измерений.

Следует отметить, что модель кварков удачно описывает некоторые эксперименты по рассеянию частиц при высоких энергиях, например, образование струй или особенность рассеяния частиц высоких энергий без разрушения. Однако этого кажется мало для того, чтобы признать существование кварков с дробным зарядом.

2.2. Модель протона, состоящего из кварков с целочисленным зарядом

Поставим перед собой цель сконструировать модель протона из кварков с целочисленным зарядом так, чтобы она предсказывала массу и магнитный момент протона. Будем предполагать, что, как и в модели Гелл-Манна, протон состоит из трёх кварков. Но в нашем случае два из них имеют заряд +e и один –e . Пусть собственным спином эти кварки не обладают, а их квантовое движение выражается их вращением вокруг общего центра по окружности радиуса R .

Рис. 2.

Пусть величина радиуса R определяется тем, что на длине окружности 2πR укладывается длина дебройлевской волны кварка λ D :

Обобщённый момент количества вращения (спин) системы будет составлен из двух слагаемых: из механического момента вращения всех трёх кварков 3p q  × R и момента импульса магнитного поля, создаваемого кварком с не скомпенсированным зарядом \(\frac{e}{c}{\bf{A}}\):

и магнитный момент кругового тока

здесь β = v /c .

Исходя из того, что величина спина протона равна ħ  / 2, имеем

Суммарная масса трёх кварков

С учётом величины массы кварка (8), создаваемый им магнитный момент получается равным

2.3. Физические свойства нейтрона

В кварковой модели Гелл-Манна нейтрон предполагается элементарной частицей в том смысле, что он состоит из другого набора кварков, чем протон. В 30-е годы прошлого века физики-теоретики пришли к заключению об элементарности нейтрона, не опираясь на данные измерений, которых в то время не было.

Чтобы объяснить данные измерений параметров нейтрона – магнитного момента нейтрона, массы и энергии его распада – рассмотрим электромагнитную модель нейтрона, в которой он не является элементарной частицей .

Предположим, что нейтрон, так же как и боровский атом водорода, состоит из протона, вокруг которого на очень малом расстоянии от него вращается электрон. Вблизи протона движение электрона должно быть релятивистским. Однако особенность формирующейся при этом устойчивой орбиты в том, что при её вычислении все релятивистские поправки компенсируют друг друга и полностью выпадают.

Рассмотрим электромагнитную модель нейтрона подробнее .

2.4. Структура нейтрона

2.4.1. Электромагнитная модель нейтрона

В первое время после открытия нейтрона в физике обсуждался вопрос о том, следует ли его считать элементарной частицей. Экспериментальных данных, которые могли бы помочь решить этот вопрос, не было, и вскоре сложилось мнение, что нейтрон подобно протону – элементарная частица. Однако тот факт, что нейтрон нестабилен и распадается на протон и электрон (+ антинейтрино), даёт основание относить его к неэлементарным составным частицам.

Рассмотрим составную частицу, в которой вокруг протона со скоростью v  → c вращается частица с массой покоя m e и зарядом – e . (Ранее подобный подход был рассмотрен в работах и ).

Выберем цилиндрическую систему координат, в которой ось z совпадёт с направлением магнитного момента протона

Между положительно заряженным протоном и отрицательно заряженным электроном должна существовать сила кулоновского притяжения (, §24):

которое проявляется в силе Лоренца:

и силой, создаваемой магнитным полем кольца стремящейся его разорвать

В результате это уравнение равновесия с неизвестными R 0 и β приобретает вид:

Магнитное поле в системе создаётся магнитным моментом протона

Здесь α = e 2  / ħc – постоянная тонкой структуры,

r c = ħ  / m e c – радиус Комптона.

Для того чтобы записать второе уравнение, связывающее эти параметры, используем теорему вириала. Согласно этой теореме кинетическая энергия частиц, объединённых электромагнитным взаимодействием, при их финитном движении равна половине их потенциальной энергии, взятой с обратным знаком:

поэтому второе уравнение, связывающие эти параметры, приобретает вид:

При этом магнитный момент токового кольца, выраженный в ядерных магнетонах μ N

Эта величина хорошо согласуется с измеренным значением магнитного момента нейтрона (ξ n = –1,91304272):

Согласно теореме вириала полная энергия рассматриваемой системы должна быть равна её кинетической энергии (26):

Эта энергия при распаде нейтрона перейдёт в кинетическую энергию вылетающего электрона (и антинейтрино), что точно согласуется с экспериментально определённой границей спектра распадных электронов, равной 782 кэВ.

2.5. Обсуждение

В рассмотренной выше модели протона, составленной из кварков с целыми зарядами, не возникает вопроса с наблюдаемостью кварков в свободном состоянии. Однако остаётся много непонятного.

Непонятно куда исчезает магнитный момент позитрона, формирующего протон. Магнитный момент электрона, формирующего нейтрон, не проявляет себя в связи с тем, что спин кольцевого тока равен нулю. Однако с кварком-позитроном это не так. Непонятно почему кварк-позитрон не аннигилирует с кварком-электроном, и какие взаимодействия заставляют их объединиться в совершенно стабильную частицу – протон, распадов которого в природе не наблюдается.

Полученное согласие оценок с данными измерений свойств нейтрона говорит о том, что он не является элементарной частицей. Его следует рассматривать как некий релятивистский аналог боровского атома водорода. С тем различием, что в боровском атоме нерелятивистский электрон удерживается на оболочке кулоновскими силами, а в нейтроне релятивистский электрон удерживается в основном за счёт магнитного взаимодействия . В соответствии с постулатом Гильберта подтверждение опытом рассмотренной выше электромагнитной модели нейтрона представляется необходимым и полностью достаточным аргументом её достоверности.

Тем не менее, для понимания модели важно использовать при её построении общепринятый теоретический аппарат. Следует отметить, что для учёных, привыкших к языку релятивистской квантовой физики, методика, использованная выше при проведении оценок, при беглом взгляде не содействует восприятию полученных результатов. Принято думать, что для достоверности, учёт влияния релятивизма на поведение электрона в кулоновском поле должен быть проведён в рамках теории Дирака. Однако в конкретном случае вычисления массы нейтрона, его магнитного момента и энергии распада в этом нет необходимости, поскольку спин электрона в рассматриваемом состоянии равен нулю и все релятивистские эффекты, описываемые слагаемыми с коэффициентами \({\left({1 - \frac{{{v^2}}}{{{c^2}}}} \right)^{ - 1/2}}\), компенсируют друг друга и полностью выпадают. Рассмотренный в нашей модели нейтрон является квантовым объектом, поскольку радиус R 0 пропорционален постоянной Планка ħ , но формально его нельзя считать релятивистским, т.к. коэффициент \({\left({1 - \frac{{{v^2}}}{{{c^2}}}} \right)^{ - 1/2}}\)в определение R 0 не входит. Это позволяет провести вычисление массы нейтрона, его магнитного момента и энергии распада, просто находя равновесные параметры системы из условия баланса сил, как это принято для нерелятивистских объектов. По-другому обстоит дело с оценкой времени жизни нейтрона. На этот параметр релятивизм по всей видимости должен оказывать влияние. Без его учёта не удаётся правильно оценить время жизни нейтрона даже по порядку величины.

3. О природе ядерных сил

3.1. Молекулярный ион водорода

В 1927 году было опубликовано квантово-механическое описание простейшей молекулы – молекулярного иона водорода. Авторы этой статьи В. Гайтлер и Ф. Лондон рассчитали притяжение, которое возникает между двумя протонами за счёт обмена электроном в том случае, если состояние молекулярного иона описывается двуямным потенциалом (рис. 3). Этот обмен является квантово-механическим эффектом и в его классического аналога не существует. (Некоторые детали этого расчёта приведены в ).

Главный вывод этой работы состоит в том, что энергия связи между двумя протонами, возникающая за счёт обмена электроном, по порядку величины близка к энергии связи протона и электрона (энергии электрона на первой боровской орбите). Этот вывод удовлетворительно согласуется с данными измерений, которые дают результат, отличающийся от расчётного менее чем в два раза.

Рис. 3. Схематическое представление симметричного двуямного потенциала. В основном состоянии электрон может либо в правой, либо в левой части ямы. В невозмущённом состоянии его энергия равна E 0 . Туннелирование из одного состояния в другое ведёт к расщеплению основного уровня и понижению энергетически выгодного состояния на Δ


Рис. 4. Схематическое изображение структуры лёгких ядер. Прерывистая линия иллюстрирует возможность обменного перехода релятивистского электрона между протонами

3.2. Дейтрон

Электромагнитная модель нейтрона, рассмотренная выше, позволяет по-новому взглянуть на механизм взаимодействия нейтрона с протоном. Нейтрон – т.е. протон, окружённый релятивистским электронным облаком – и свободный протон составляют вместе объект, подобный молекулярному иону водорода. Различие в том, что в данном случае электрон является релятивистским, радиус его орбиты R 0 ≈ 10 –13 см (28) и масса примерно 2,57 m e .

Приложение результатов квантово-механических вычислений Гайтлера – Лондона к этому случаю даёт возможность оценить энергию связи дейтрона с точностью примерно такой же, как и в случае молекулярного иона водорода . Оценка предсказывает величину энергии связи примерно равной 2,13·10 –6 эрг, в то время как измерения дают

3.3. Лёгкие ядра

3.3.1. Ядро 3 2 He

Из рис. 4, на котором схематически показаны энергетические связи в ядре 3 2 He, видно, что они составлены тремя парными взаимодействиями протонов. Поэтому следует предполагать, что энергия связи этого ядра должна быть равна утроенной энергии связи дейтрона:

Дефект массы этого ядра

Согласие оценки E He3 с измеренным значением энергии связи E  (3 2 He) можно считать очень хорошим.

3.3.2. Ядро 4 2 He

Из схемы энергетических связей в ядре 4 2 He, показанной на рис. 4, видно, что эти связи образованы шестью парными взаимодействиями протонов, реализуемой двумя электронами. По этой причине можно предполагать, что энергия связи ядра 4 2 He должна быть равна:

Дефект массы этого ядра

Этот дефект массы соответствует энергии связи

Такое согласие этих величин можно вполне считать удовлетворительным.

3.3.3. Ядро 6 3 Li

Можно предполагать, что энергия связи ядра Li – 6 должна быть близка к сумме энергий связи ядра He – 4 и дейтрона, располагающегося на следующей оболочке:

Такое предположение возможно, если обмен электроном между протонами разных оболочек затруднён.

В то же время дефект массы этого ядра

и связанная с ним энергия связи

что действительно подтверждает слабую связь между протонами на разных оболочках.

Следует отметить, что с остальными лёгкими ядрами ситуация не столь проста. Ядро 3 1 T состоит из трёх протонов и двух электронов, осуществляющих связь между ними. Перескок двух электронов в такой системе должен подчиняться постулату Паули. По-видимому, это является причиной того, что энергия связи трития не очень сильно превышает энергию связи He – 3.

Ядерные связи в ядре 7 3 Li, казалось бы, могут быть представлены схемой E Li7 ≈ E He4 + E T , но это представление ведёт к довольно грубой оценке. Однако для нестабильного ядра Be – 8 аналогичное представление E Be8 ≈ 2E He4 ведёт к очень хорошему согласию с измерениями.

3.4. Обсуждение

Хорошее согласие вычисленной энергии связи для некоторых лёгких ядер с данными измерений позволяет считать, что ядерные силы (по крайней мере, в случае этих ядер) имеют описанный выше обменный характер.

Впервые внимание на возможность объяснения ядерных сил на основе эффекта обмена электроном обратил видимо И.Е. Тамм ещё в 30-е годы прошлого века. Однако позже в ядерной физике преобладающей стала модель обмена π-мезонами, а потом глюонами. Причина этого понятна. Для объяснения величины и радиуса действия ядерных сил нужна частица с малой собственной длиной волны. Нерелятивистский электрон для этого не подходит. Однако с другой стороны, модели π-мезонного или глюонного обмена тоже не оказались продуктивными. Дать достаточно точное количественное объяснение энергии связи даже лёгких ядер эти модели не смогли. Поэтому приведённая выше простая и согласующаяся с измерениями оценка этой энергии является однозначным доказательством того, что так называемое сильное взаимодействие (в случае некоторых лёгких ядер) является проявлением эффекта притяжения между протонами, возникающего за счёт обмена релятивистским электроном.

4. Нейтрино и мезоны

4.1. Нейтрино

Ранее было показано, что в рамках стандартной максвелловской теории электромагнитного поля имеются две возможности . Используя разные методы возбуждения, можно в пустом пространстве (эфире) возбудить либо поперечную электромагнитную волну (фотон), либо магнитный квант (магнитный солитон), т.е. волну лишённую электрической составляющей. Для генерации в вакууме электромагнитной волн нужно использовать колеблющийся электрический или магнитный диполь.

Согласно уравнениям Максвелла, величина электрического поля, переносимого фотоном, пропорциональна второй производной по времени от меняющегося во времени магнитного момента, который генерирует фотон. Если временная зависимость магнитного момента описывается идеально острой ступенчатой функцией Хевисайда, то первая производная от этой ступеньки есть δ-функция, а вторая производная равна нулю. Поэтому при переднем фронте ступеньки, длящемся порядка 10 –23 секунды (такова оценка времени превращения π-мезона в μ-мезон, при котором рождается антинейтрино) должен излучаться квант, имеющий δ-образную магнитную составляющую и лишённый электрической составляющей (см. подробнее в ).

Характерными особенностями магнитного солитона является то, что, будучи циркулярно поляризован, он должен обладать спином ħ  / 2, и его взаимодействие с веществом почти на два десятка порядков слабее, чем у электромагнитной волны. Эта особенность обусловлена тем, что в природе отсутствуют магнитные монополи.

Это позволяет предполагать, что магнитный солитон можно отождествить с нейтрино. При этом при рождении магнитного момента возникает антинейтрино, а при его исчезновении нейтрино.

Так в процессе последовательного превращении π  – -мезона сначала в μ  – -мезон, а затем в электрон, таких магнитных γ-квантов возникает три (рис. 5).

Рис. 5. Схема рождения трёх магнитных солитонов (нейтрино) в процессе распада π  – -мезона . π  – -мезон не обладает магнитным моментом. При распаде он превращается в μ  – -мезон, несущий магнитный момент. Этот процесс должен сопровождаться излучением магнитного γ-кванта (вылетом антинейтрино). При распаде μ  – -мезона его магнитный момент исчезает и излучается ещё один магнитный γ-квант (нейтрино). Третий магнитный солитон (антинейтрино) возникает в момент рождения электрона

4.2. Мезоны

В цепочке превращений пион → мюон → электрон рождается три нейтрино (рис. 5). Заряженные пионы (π  – -мезоны), спины которых равны нулю, не обладают магнитными диполями. В момент превращения π  – -мезона в мюон (μ‑мезон) скачкообразно возникает магнитный момент, что сопровождается испусканием мюонного антинейтрино \({\widetilde \nu _\mu }\). При распаде мюона генерируется излучение мюонного нейтрино ν μ , которое вызвано тем, что исчезает мюонный магнитный момент. Одновременно с этим рождается электрон, обладающий магнитным моментом, что приводит к излучению электронного антинейтрино \(\mathop {\widetilde \nu }\nolimits_e \).

Тот факт, что никаких других продуктов кроме нейтрино и антинейтрино в этих реакциях не возникает, приводит нас к предположению, что пион и мюон не являются самостоятельными элементарными частицами, а есть возбуждённые состояния электрона.

Эти мезоны имеют массы

здесь λ D = 2πħ  / P – длина волны де Бройля,

P – обобщённый импульс частицы,

n = 1, 2, 3... – целое число.

Инвариантный кинетический момент импульса (спин) такой частицы

получаем

Это значение массы очень близко к величине массы π-мезона (46), имеющего спин равный нулю:

Это значение массы очень близко к величине массы μ-мезона (46), имеющего спин равный ħ  / 2:

\[\frac{{{M_{1/2}}}}{{{M_{{\mu ^ \pm }}}}} \simeq 0,9941.\] (54)

Обнаруженная возможность вычисления масс мезонов, исходя только из их спинов, подтверждает предположение о том, что эти мезоны являются возбуждёнными состояниями электрона.

5. Заключение

Проведённые выше вычисления свойств элементарных частиц обнаруживают недостаточность кварковой модели с дробными зарядами кварков, в рамках которой такие оценки не удаётся получить. Эта модель в современном виде демонстрирует возможность классификации частиц, но это не доказывает того, что такая классификация является единственно возможной и верной.

При этом важно отметить, что для описания протон-нейтронного взаимодействия (в лёгких ядрах) нет необходимости привлекать модель глюонов, а также использовать теории сильного и слабого взаимодействий.

Действительно, обмен релятивистским электроном между протонами в дейтроне и также как обмен нерелятивистским электроном в молекулярном ионе водорода – это квантово-механическое явление и нет основания приписывать этому обменному эффекту в случае дейтрона роль фундаментального взаимодействия Природы.

Излучение нейтрино происходит в процессе β-распада (или К-захвата). Процессы распадов ядер, как α так и β, не требуют введения какого-либо нового особенного фундаментального природного взаимодействия. Но β-распад имеет существенную особенность: при β-распаде за чрезвычайно короткое время возникает (или исчезает при К-захвате) магнитный момент свободного электрона. Это производит магнитный удар по эфиру и приводит к излучению магнитного γ-кванта, т.е. нейтрино. Это явление имеет сугубо электромагнитный характер, и для его описания не нужно вводить специальное слабое или электрослабое взаимодействие.

Однако формально отсутствие необходимости вводить сильное и слабое взаимодействия в описание других объектов микромира не доказано. Очевидно, что для расчёта ядерных сил в тяжёлых ядрах потребуется привлекать другие эффекты, связанные, например, с существованием ядерных оболочек.

Тем не менее, возможность электромагнитного описания некоторых частиц делает актуальным вопрос о корректности существующего описания многих других, более сложных объектов микромира.

Очевидно, что в соответствии с главным постулатом естественных наук У. Гильберта проверка корректности такого описания должна опираться на экспериментальные данные базовых свойств исследуемых объектов . Удачный метод систематизации частиц в некую таблицу нельзя считать исчерпывающим доказательством правильности и единственности данного подхода.

Литература:

  1. Гильберт У. О магните, магнитных телах и большом магните – Земле. М.: Издательство Академии наук СССР, 1956.
  2. , 2016.

На первом этапе стремление каким-то образом ограничить количество элементарных составляющих материи привело к обсуждению теоретических схем, в которых фундаментальными частицами считалась лишь часть известных адронов, которые рассматривались как связанные состояния, состоящие из фундаментальных адронов. Однако позже оказалось, что эти схемы могут описать свойства всех известных частиц.

С увеличением количества открытых адронов трудности, с которыми столкнулись подобные схемы, усложнялись и становилось все более очевидным, что адроны не могут быть элементарными образованиями, элементарные частицы, если они существуют, должны быть объектами какой-то другой природы.

Адроны с целочисленным спином называют мезонными, поскольку первые обнаруженные мезоны (седьмой, К) имели массу, промежуточную между массой электрона и протона. Адроны с пивцилим спином вследствие значительной массы получили название барионной адронов. К ним относятся нуклоны, гипероны и некоторые другие частицы.

Знание характеристик адронов позволяет надежно провести их классификацию, то есть выделить группы с одинаковыми или близкими свойствами. Часть таких достаточно широких групп мы упоминали. Оказывается, что можно выделить и другие группы адронов, близких друг к другу по некоторым признакам. Современные исследования направлены на поиски фундаментальных частиц, из которых можно создать все сильновзаемодиючи частицы, т.е. адроны. Этих фундаментальных частиц предъявляют следующие требования: они должны быть барионами и антибарионамы - частицами с соответственно положительным и отрицательным барионным зарядами. их комбинация способствовать образованию барионного заряда любого адронов. Барионный заряд мезонов равен нулю, поэтому их получают комбинацией барионов с антибарионом. Фундаментальные частицы должны иметь минимальное пивциле значение обычного спина, чтобы из них можно было построить частицы с любыми целыми и пивцилимы спинами. Среди них обязательно должен быть Барион с странность, равной единице, для контроля странных частиц. Важно также, чтобы масса фундаментальных частиц не очень отличалась, что может свидетельствовать о одинаковые значения сильного взаимодействия, которое существует между ними. Еще одно требование связано с изотопическим спином фундаментальных частиц. Чтобы можно было достать любые изотопический мультиплет, в нашем распоряжении должно быть хотя бы изотопический синглет и изотопический дублет.

С. Саката, руководствуясь этими требованиями, за фундаментальные частицы взял три барионы ^ протон, нейтрон и?-гиперон (р, n, X) и их античастицы (р, л, X). Схема Саката удовлетворительно описывает мезонные адроны, но оказывается непригодной для барионной адронов. Для устранения недостатков схемы Саката был применен октетного формализм М. Гелл-Манна и Ю. Неймана. Авторы октетного формализма предложили расширить схему Саката, выбрав в качестве фундаментальных частиц восемь барионов вместо трех.

Новую схему оказалось возможным распространить на барионного адроны. На основе предложенной схемы Гелл-Манн предсказал существование неизвестного в то время и ~-гиперон. При этом с помощью октетного схемы определили не только все квантовые числа предусмотренного гиперонов, но и его массу. Предсказанное значение массы совпало с экспериментальным значением, когда ^ "-гиперон был открыт в Брукхейвене в двухметровой водородной пузырьковой камере, облученной К-мезонами.
В первой форме этой модели было предложено три типа кварков, обозначенных буквами u, d9 s, которые происходят от английских слов up (вверх), down (вниз), strange (странный). Носителем странности был кварк s, поэтому в состав всех странных частиц входил минимум один s-кварк, или s-антикварк. В кварковой модели распределение масс между адронами отражает распределение масс между кварками. Итак, поскольку s-кварк значительно массивнее от других кварков, масса странных адронов значительно больше массы Неудивительно адронов.

Позже систему кварков расширили, было дополнительно введено кварки: «очарованный» (с), «привлекательный» (Ь) и «правдивый» (t). Свойства, которые приписываются кваркам, приведены в табл. 18.3. Основанием увеличение количества кварков было то, что связанные состояния из трех кварков вроде иии (Д +), ddd (Д), sss (? ~) противоречат принципу Паули. Из табл. 18.3 видно, что все квантовые числа кварков в этих образованиях одинаковы. Поскольку кварки имеют пивцили спины и, следовательно, имеют описываться статистике Ферми, то в одной системе не может быть не только трех, но даже двух кварков с одинаковым набором квантовых чисел. Исходя из некоторых соображений, в частности для устранения противоречия с принципом Паули, было введено понятие «цвет» кварка. Возникла мысль, что каждый кварк может существовать в трех «окрашенных» формах: красной, зеленой, синей (отметим, что смесь этих цветов дает «нулевой» белый цвет). Тогда можно утверждать, что из квар-ки, образующие, например Q ~-гиперон, имеют различную окраску, поэтому принцип Паули не нарушается.

Сочетание «цветов» кварков в случае адронов должны быть таким, чтобы в целом «цвет» адронный был нулевым (т.е. адрон должен быть «бесцветным»). Так, в состав протона входят кварки и (красный), и (зеленый) и d (синий). В результате получают нулевой (белый) «цвет».

Антикварки считаются окрашенными в дополнительные «цвета» («ан-тикольоры»), дающие вместе с «цветом» нулевой «цвет». Поэтому мезоны, состоящие из кварка и антикварка, также имеют нулевой «цвет». В основном «цвет» кварка (подобно электрическому заряду) передает различие в свойствах, которая определяет притяжения и отталкивания кварков. По аналогии с квантами полей различных взаимодействий (фотонами в электромагнитном взаимодействии, я-мезонами в сильном взаимодействии и т. д.) введен частицы-переносчики взаимодействия между кварками. Эти частицы назвали глюонами (от англ. Glue - клей). Они переносят «цвет» от одного кварка в другой, в результате чего кварки удерживаются вместе.

Еще один характерный признак кварков - это их электрический заряд. Кварки d, s, Ъ имеют заряд -1 / 3, тогда как заряд кварков ц, с, t равен +2 / 3. Антикварки d, s, b и т. д. имеют противоположные по знаку электрические заряды, следовательно, электрический заряд антикварка d равен +1 / 3, антикварка и равна -2 / 3 и т. д. антикварка характеризуются также противоположными цветами: античервоним, анти-зеленым и антисиним. При образовании адронов кварки могут комбинироваться двумя путями: либо объединяются три кварки при одном кварк каждого «цвета», или кварк определенного «цвета» присоединяет к себе антикварк с соответствующим «антикварков». Эти комбинации называют «бесцветный», и они, кроме этого, имеют еще одну важную особенность. Во всех возможных комбинациях дробные электрические заряды кварков складываются так, что дают целочисленный суммарный заряд; никакие другие комбинации (кроме образованных сложением уже разрешенных комбинаций) не имеют такого свойства. Кварковой состав протона uud, дающий полный электрический заряд 2/3 + 2/3-1/3 или +1. Нейтрон состоит из кварков uud с зарядом 2/3-1/3-1/3, что в результате дает ноль. Положительный пион содержит кварк и и антикварк J, заряды их +2 / 3 и +1 / 3 дают в сумме +1.

Лептоны и кварки принято разбивать на три поколения. Каждое поколение состоит из заряженного лептона, соответствующего ему нейтрино и двух кварков, один из которых имеет заряд -1 / 3, а второй +2 / 3. Первое поколение состоит из электрона, электронного нейтрино, кварков diu. Поскольку кварки существуют в трех «цветах», это поколение содержит восемь частиц, представители других поколений наблюдаются практически только в лабораторных экспериментах с ускоренными частицами. В единой теории эти три поколения описываются независимо, но аналогичным образом.

На рис. 18.2 изображены три поколения лептонов и кварков: заряды в лептонов цели, в кварков - дробные. Лептоны существуют в свободном виде, а кварки являются лишь составляющими более сложных частиц - адронов. В обычной веществе содержатся частицы только с первого поколения. Развитие физики элементарных частиц допускает сложную структуру кварков и лептонов, т.е. они, в свою очередь, состоят из суб-кварков. Гипотеза субкваркив обсуждается многими учеными, хотя никому еще не удалось обойти трудности, которые встречаются на этом пути, очевидно, потому, что они имеют принципиальный характер.

Сейчас «внутренность» частиц изучена до размеров порядка 10 ~ 18 м, но субкваркив не обнаружено. Достаточно вероятно, что фундаментальные физические законы, известные ныне, перестают действовать на расстояниях, меньших чем 10 ~ 18 м, а открытие субкваркив, если оно состоится, приведет к изменению основных представлений о законах природы.

Мы рассмотрели некоторые проблемы физики элементарных частиц, которая изучает свойства вещества. Трудно предсказать ход развития этого раздела физики. Однако экспериментальные результаты в области физики элементарных частиц является надежной основой ее развития в будущем.

Все ныне известные элементарные частицы можно разделить на группы по их общим свойствам и отношению к взаимодействию. Таких взаимодействий в природе известно четыре: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие имеет наибольшую по сравнению с другими взаимодействиями интенсивность. Оно определяет связь протонов и нейтронов в ядрах атомов (путем обмена виртуальными л-мезонами), что и обеспечивает исключительную прочность этих образований.

Электромагнитное взаимодействие характеризует менее интенсивные процессы. Оно обусловливает связь атомных электронов с ядрами, связь атомов в молекулах, а также взаимодействия вещества с электромагнитными полями.

Слабое взаимодействие характеризует процессы, связанные с самими частицами, в частности с (β-распадом, а также с распадами μ, π, К-мезонов и гиперонов. Оказалось, что слабое взаимодействие носит универсальный характер, в нем участвуют все частицы. Время жизни большинства таких частиц лежит в диапазоне 10 -8 - 10 -10 с, тогда как типичное время сильных взаимодействий составляет 10 -23 -10 -24 с. Иллюстрацией подобного взаимодействия может служить тот факт, что нейтрино, способные только к слабому взаимодействию, могут беспрепятственно проходить в веществе расстояние ~10 14 км.

Гравитационное взаимодействие, столь хорошо известное по своим макроскопическим проявлениям, в случае элементарных частиц дает чрезвычайно незначительные эффекты из-за малой величины их масс. Однако эти эффекты значительно возрастают и в микромире на расстояниях порядка 10 -33 см, поскольку увеличивается масса порождаемых частиц. Эти взаимодействия играют доминирующую роль в мегамире.

Сопоставление указанных четырех взаимодействий по безразмерным параметрам, связанным с квадратами соответствующих констант взаимодействий, дает для сильного, электромагнитного, слабого и гравитационного следующие отношения: 1:10 -3:10 -10:10 -38 . Вообще говоря, интенсивность различных процессов по-разному зависит от энергии, поэтому с ростом энергии взаимодействующих частиц меняется относительная роль различных взаимодействий.

В зависимости от участия в тех или иных видах взаимодействий все частицы, как мы уже указывали, можно разделить на четыре группы.

I группа : е, μ, τ, ν е, ν μ , ν τ - лептоны участвуют в слабых и электромагнитных взаимодействиях; II группу составляют сильно взаимодействующие частицы (их сейчас насчитывается более 300), называемые адронами (они также участвуют в слабых и электромагнитных взаимодействиях).

Изучение адронов привело к выводу о наличии общего в их структуре. В 1964 г. М. Гелл-Манн и Дж. Цвейг высказали гипотезу о том, что в структуру всех адронов входят экзотические по своим характеристикам объекты, получившие название кварки . Предполагалось, что существует три вида кварков u, d, s, заряды которых дробные е u =+ 2 / з, e d = e s =- 1 / з заряда электрона, а массы m u = m d ~300 МэВ, m s ~450 МэВ. В дальнейшем, так требовала логика развития теории, для описания слабых взаимодействий адронов (слабых распадов) пришлось ввести кварки еще одного типа, так называемые с-кварки с зарядом е с = е u = + 2 / з заряда электрона. Этот кварк характеризуется новым квантовым числом, названным charm -"очарование".

В ноябре 1974 г. была открыта новая частица J/ψ с необычными свойствами (масса 3,1 ГэВ примерно в три раза больше массы протона), время жизни ~10 -20 с (т. е. в 1000 раз дольше, чем любые известные ранее частицы с такой большой массой). Она распадается на пары е + + е - или μ + + μ - . Вскоре была также открыта частица, получившая название ψ"(масса 3,7 ГэВ).

Эксперименты показали, что частицы J/ψ, ψ" принадлежат целому семейству мезонов, которое хорошо соответствует спектру чармония с эффективной массой, соответствующей предсказанной теорией массой с-кварка (m с ≈1,6 ГэВ). Для окончательного подтверждения существования с-кварка необходимо было открыть адроны с явным "очарованием". В настоящее время обнаружены явления, указывающие на рождение очарованных частиц.

Физики считают, что существование с-кварка экспериментально подтверждено. Но так как существование с-кварков основывалось на предположении о существовании легких кварков - u, d, s, то открытие очарованных чармированных адронов имеет фундаментальное значение для подтверждения истинности всей кварковой гипотезы.

Физики-теоретики пришли к выводу о том, что кварки каждого типа должны находиться в одном из трех состояний, которые сейчас принято характеризовать тремя цветами (например, желтым, синим, красным); они предполагают, что сильное взаимодействие кварков - это взаимодействие их цвета с новым полем, т. н. глюонным (от англ. glue - клей, т. к. это поле как бы "склеивает" кварки в адроне). Кванты глюонного поля - глюоны - не участвуют в электромагнитных и слабых взаимодействиях. Они не только изменяют цветовое состояние кварка, но и сами несут цвет и взаимодействуют с глюонным полем. Все это породило по аналогии с квантовой электродинамикой новую отрасль физики - так называемую квантовую хромодинамику.

Важно подчеркнуть, что кварки и глюоны не наблюдаются в свободном состоянии, они не "вылетают" из адронов.

Имеются специальные исследования, где доказывается принципиальная невозможность существования кварков в свободном состоянии.

Физики уже давно пытаются создать и непротиворечивую теорию слабых взаимодействий. В 1967 г. С. Вайнберг и А. Салам предложили вариант такой теории - построили модель на основе использования общих принципов симметрии. Этой теорией было предсказано существование ранее неизвестных частиц - квантов особых векторных полей, ответственных за перенос как слабых, так и электромагнитных взаимодействий.

Две из этих частиц W ± должны иметь заряды и могут быть реально наблюдаемыми, так как, по их мнению, именно обмен заряженными W ± -мезонами и порождает слабое взаимодействие так называемых заряженных токов. Что же касается двух нейтральных частиц W°, B°-квантов нейтронных полей, то физически наблюдаемыми могут оказаться кванты любой их линейной комбинации:

где Θ W ,- так называемый угол Вайнберга.

Было показано, что одна из их комбинаций - так называемое поле A - отождествляется с электромагнитным полем, а обмен нейтральными Z°-мезонами порождает новый тип слабых взаимодействий - так называемые нейтральные токи , которые и были открыты в 1973 г. Они стали первым подтверждением относительной истинности модели Вайнберга-Салама. В настоящее время W ± и Z°-частицы открыты.

Необходимо обратить внимание и на открытие новых лептонов. Это исключительно редкое событие. Достаточно напомнить, что электрон (е) был открыт в 1897 г., а мюон (μ) в 1936-1938 гг. В 1975-1976 гг. появились данные в пользу существования τ ± , так называемого тяжелого лептона с массой 1,8 ГэВ (2 Мр). Изучение τ-лептона дает еще один аргумент в пользу трех состояний кварков. Было высказано предположение и о существовании нового лептона (v τ - нового нейтрино), τ-лептон имеет новое лептонное квантовое число, которое было названо секволептоном (от англ. sequential - последовательный).

Дальнейшие исследования привели к выводу, что для восстановления симметрии следовало бы увеличить число кварков. Четырех стало уже недостаточно для описания объектов микромира, необходимо было ввести еще два кварка. Дело в том, что в мае - июне 1977 г. группой Л. Ледермана были получены важные результаты, а именно - обнаружено новое семейство тяжелых частиц с массами ~10 ГэВ.

Открытие этих частиц (они были названы γ-мезонами) вызвало к жизни необходимость существования еще более тяжелого кварка "b" с эффективной массой m b ~5 ГэВ с новым квантовым числом, получившим название "прелесть" (от англ. beauty).

Новые γ-мезоны - это частицы со скрытой прелестью. Таким образом, изучение адронов и лептонов обогатило науку знанием о новых объектах, об их количественных и качественных характеристиках, об их взаимодействиях. Все это свидетельствует о наступлении новой эпохи в изучении неисчерпаемых свойств микрообъектов, составляющих в совокупности с различными полями фрагмент целостного материального мира.

Сейчас появилась надежда на создание и единой теории взаимодействия. В свое время А. Эйнштейн пытался создать такую теорию поля. В. Гейзенберг также приложил немало усилий для построения единой (так называемой спинорной) теории "праматерии". Ныне мы стали свидетелями становления еще одного из вариантов единой теории взаимодействия, получившего название Великого объединения.

Уже удалось создать единое электрослабое взаимодействие, получены обнадеживающие результаты в объединении сильного и электрослабого взаимодействий; причем сильное и слабое взаимодействия сами по себе являются его проявлением. Вне объединения остается еще гравитационное взаимодействие, но есть уже подходы к включению в единую теорию взаимодействия и его (суперсимметрия).

Современное развитие физики элементарных частиц позволило показать, что известные частицы (лептоны, адроны, кварки, глюоны, фотоны) существенным образом определяют специфику процессов микромира. Судя по всему, этот перечень далек от своего завершения, как и сама теория элементарных частиц.

Как отмечалось, физика элементарных частиц располагает огромным эмпирическим материалом и теория уже дает рациональное объяснение значительной его части. Однако она еще существенно отстает от эксперимента и не является внутренне замкнутой системой определенных принципов и понятий, хотя ее понятийный аппарат значительно более емкий и отличается от аппарата ранее существовавших теорий.

Рассмотрим теперь в ретроспективе некоторые попытки построения единой теории, охватывающей все частицы и поля. Здесь имеются две основные тенденции, в конечном счете связанные друг с другом. Первая из них ведет начало от идеи Луи де Бройля, состоящей в том, чтобы положить в основу простейшую волновую функцию спинорного типа, описывающую частицу с минимальным неисчезающим угловым моментом, т. е. спином S= 1 / 2 (в долях h / 2π). Тогда, комбинируя эти волновые функции (в конце концов перемножая), мы при некоторых дополнительных условиях получим путем подобного "слияния" все другие возможные волновые функции частиц со спинами 0,1; 3 / 2 ; 2... Комбинируя два угловых момента + 1 / 2 и - 1 / 2 , получим 0, комбинируя два угловых момента + 1 / 2 и + 1 / 2 , получим 1 (так как спины + 1 / 2 могут ориентироваться лишь параллельно либо антипараллельно). Методом слияния удается, комбинируя два уравнения Дирака, описывающие спиновые частицы ("фермионы"), получить уравнения Клейна-Гордона и Прока, а в частном случае - исчезающей массы покоя - уравнения электродинамики Максвелла. Таким путем в принципе возможно из пар нейтрино-антинейтрино построить фотоны. Идеи нейтринной теории света Луи де Бройля развивали Крониг, Иордан, А. Соколов.

Слабым пунктом метода слияния является отсутствие каких-либо сил, которые обусловливают самое слияние. Остается неясным, что заставляет, например, нейтрино превращаться в кванты электромагнитного поля. Ответ на этот вопрос пыталась дать так называемая нелинейная единая спинорная теория материи В. Гейзенберга. Название этой теории явно неудачно. Речь шла о создании единой теории элементарных частиц и полей, а не о теории материи, ибо единственной теорией материи, как объективной реальности, существующей вне и независимо от познающего субъекта, является диалектический материализм. Если мы примем за основу новой теории некоторое единое спинорное поле, то оно способно взаимодействовать лишь само с собой. Это приводит к появлению так называемых нелинейных членов в уравнениях Дирака (которые были впервые введены Д. Иваненко еще в 1938 г.), а затем более подробно рассмотрены В. Гейзенбергом (193, 441-485; 34).

Эта теория не дает точных значений масс частиц и констант связи, но, несомненно, это одна из попыток, заслуживающих внимания, хотя она и не лишена недостатков. Это только программа исследований, которую не следует переоценивать, как это уже имело место в отдельных статьях, опубликованных в нашей печати.

Необходимо иметь в виду, что уже несколько лет назад была вскрыта некорректность математической трактовки спинорной теории Гейзенберга, а также было показано, что введенная Гейзенбергом индефинитная метрика приводит к нарушению микропричинности. Можно с большим основанием считать, что конкретная попытка Гейзенберга создать единую теорию элементарных частиц пока потерпела неудачу, но избранное им направление исследования не следует сбрасывать со счетов, В последние годы наблюдается своеобразный возврат к идеям В. Гейзенберга.

В 1958 г. в США, когда Паули докладывал о теории Гейзенберга, присутствовавший на обсуждении Н. Бор бросил реплику: "Для новой теории теория Гейзенберга недостаточно сумасшедшая" (crasy) (23, 20). Н. Бор имел в виду отсутствие в этой теории необычной, диковинной идеи. На наш взгляд, такой идеи у физиков еще нет. Академик И. Тамм считал наиболее перспективным направлением в разработке теории элементарных частиц попытки коренным образом пересмотреть наши пространственно-временные представления в применении к ультрамалым масштабам. Он ссылается на высказывания академика Л. Т. Мандельштама о неприменимости обычных понятий пространства и времени к ядерным масштабам, а также на работы X. Снайдера (1947), предложившего способ квантования пространства и времени, приводящий к выводу о дискретности пространства. Снайдер показал, что квантованное пространство, т. е. пространство некоммутирующих между собой координат, дискретно и вместе с тем изотропно. Однако идеи Снайдера дальнейшего развития почти не получили за исключением работ Гольфанда и Кадышевского.

В. Г. Кадышевский (50. 1961. 136. (1)) предлагал ввести в теорию элементарных частиц универсальную длину "l" на основе изменения геометрии пространства-времени. Он считал, что новая геометрия должна удовлетворять следующим условиям:

а) форма S 2 = X 2 0 - X 2 2 неинвариантна преобразованию координат, при этом группа движений допускала бы меньшую степень изотропии 4-пространства, чем Лоренцова группа;

б) неинвариантность интервала и наличие универсальной длины были бы причинами несохранения четности;

в) должна существовать подгруппа, для которой S 2 есть инвариант, чтобы можно было описать симметрии больших областей 4-пространства - больших по сравнению с элементарной длиной "l". Длину "l" автор связывает с величиной С - универсальной константой слабого взаимодействия. После выделения множителей "h " и "С" для "l" следует при этом значение 7*10 -17 см. Эта и последовавшие за ней работы очень интересны, но пока возможности данной теории остаются неясными.

В 1959 г. канадский физик X. Коиш и советский физик И. С. Шапиро в своих исследованиях рассмотрели дискретное пространство, состоящее из конечного числа элементов, и показали хорошее совпадение ряда выводов с экспериментальными данными. Это также один из возможных поисковых путей, приближающий к созданию систематики элементарных частиц, к новой обобщающей физической теории. Однако И. С. Шапиро, выступая в 1962 г. на Совещании по философским проблемам физики элементарных частиц, оценил свои работы как начальную стадию, весьма отдаленную от создания теории, позволяющей провести сравнение с опытом. Философский анализ этой проблемы дал Р. А. Аронов (31.1957.3).

В физике рассматривались вопросы о так называемых спектральных представлениях и дисперсионных соотношениях. По мнению ряда физиков, это был своеобразный новый этап в ее развитии, когда исследовались аналитические свойства физических величин (например, амплитуды рассеяния) при продолжении их от вещественных значений в комплексную область. Применение к этим величинам теории функций комплексного переменного дало чрезвычайно важные результаты. Мандельштам (99) ввел двойные дисперсионные соотношения, рассматривая комплексные значения не только энергии, но и импульса. Редже предложил обобщение формализма S-матрицы и дисперсионных соотношений в комплексные значения углового момента. В результате применения "реджистики" были определены соотношения между амплитудами вероятностей различных процессов рассеяния: ππ, πN, NN и т. д. при высоких энергиях. Однако существуют данные (в области физики сверхвысоких энергий), которые ограничивают претензии "реджистов" на всеобъемлемость их представлений.

Академик И. Тамм считал дисперсионную теорию в известной мере феноменологической, так как она, не вдаваясь в механизм элементарных физических явлений, извлекает из данных опыта численные значения ряда входящих в нее параметров и затем правильно предсказывает результаты гораздо более обширного круга экспериментов, чем те, на основании которых были определены эти параметры. Во втором издании настоящей книги мы писали (С. 194), что хотя на первый взгляд здесь проявляется тесное единство теории и практики, но нам кажется, что сама теория носит рецептурный характер. Мы были согласны с выводом И. Тамма о том, что "успехи дисперсионной теории (как настоящие, так и будущие) отнюдь не решают основной задачи создания новой физической теории, базирующейся на ограниченном числе общих принципов и постулатов" (23, 21). Последующее развитие физики подтвердило эти предположения. Было много и других попыток построить теорию элементарных частиц. Кратко разберем некоторые из них.

Ферми и Янг предложили рассматривать п-мезон как образованный из нуклона и антинуклона при помощи каких-то еще неизвестных сил, действующих на крайне малых расстояниях р+¯р = π. Огромная потенциальная энергия связи "съедает" почти всю массу обоих нуклонов, оставляя лишь массу пиона. Вызвало интерес предложение С. Сакаты, положившего в основу теории р,π, λ и три соответственные античастицы. Тогда, комбинируя эти основные частицы, можно получить все пионы, K-мезоны и гипероны. "Эта модель,- писал С. Саката,- привлекла к себе внимание, так как она не только служила "субстанциональной" основой для структуры сильного взаимодействия, но и позволила объяснить спектр масс составных частиц и предсказала существование тогда открывавшихся резонансных частиц" (74, 168). Впрочем, природа сил сцепления оставалась при этом неясной. Минимум три основные частицы необходимы для того, чтобы обеспечить присутствие таких фундаментальных свойств, как заряд, изоспин, странность (представленная λ-гипероном). Ясно опять-таки, что в основу следует положить "вращающиеся" спинорные частицы, фермионы, так как при отсутствии "вращения" его неоткуда было бы получить. Мы видим здесь своеобразное возрождение теории Гельмгольца и Кельвина, пытавшихся в середине XIX в. строить материю из гипотетических эфирных вихрей.

При построении "составной" модели Саката исходил из следующего взгляда на элементарные частицы: "...я рассматриваю элементарные частицы как один из нескончаемого множества уровней строения материи, качественно отличающихся друг от друга и в совокупности образующих природу. Моя точка зрения основывается на положениях материалистической диалектики... нужно прежде всего установить, относятся ли открытые к настоящему времени тридцать с лишним видов элементарных частиц к одному или нескольким различным уровням строения материи" (31. 1962. 6, 134). Саката и его сотрудники попытались включить в свою схему и лептоны. За основу берутся лептоны е - , v, μ и некоторое "барионное" поле В (так называемая В-материя). Комбинируя один из лептонов с полем В, они получают основные частицы. Тем самым осуществляется сходство, подмеченное Маршаком - Гамба - Окуба (203) между барионами (р, π, λ и лептонами v, e - , μ -). Эта же симметрия осуществляется в нелинейной спинорной теории частиц.

Маршак назвал свои соображения о симметрии "киевской симметрией", поскольку они родились на симпозиумах Киевской конференции по физике высоких энергий летом 1959 г. Речь идет (как мы уже упоминали) о некоторой аналогии, существовавшей между тройками барионов (р, π, λ) и лептонов (v, e - , μ -). Любому члену четырехфермионного взаимодействия, с участием операторов этих частиц, можно противопоставить аналогичный член, получаемый из первого заменой λ на μ - , π на е - , р на v. Тогда, если процесс является разрешенным / запрещенным до замены, то он остается разрешенным / запрещенным после замены одной частицы из барионной / лептонной триады на "симметрофактор" из лептонной / барионной тройки. Маршак указывает, что он внимательно проанализировал все экспериментальные данные и не нашел ни одного случая, противоречащего указанной "симметрии", однако природа этой симметрии остается пока невыясненной. Теперь, когда уже создана кварковая модель, возникла возможность интерпретировать киевскую симметрию как соответствие четырех кварков - u, с, d, s четырем лептонам - v е, v μ , e, μ, но природа этой симметрии по-прежнему недостаточно известна.

Мы знаем, что всякая, даже самая удачная попытка создания единой теории вещества и поля неизбежно будет носить временный, преходящий характер. Дальнейшее теоретическое и экспериментальное проникновение в глубь микромира и, все более широкие исследования явлений в космосе, неизбежно нарушая любую единую картину, приведут к ее распаду на отдельные элементы, пока вновь не возникнут тенденции к объединению уже на более высоком уровне.

Введение различных понятий, отражающих реальные свойства частиц (изотопический спин, странность, барионный заряд и т. д.), приблизило нас к правильной классификации частиц. Огромная роль в классификации микрочастиц принадлежит принципу симметрии. Нетрудно заметить, что элементарные частицы каждого класса (фотоны, лептоны, мезоны, гипероны) обладают определенными, общими для них свойствами симметрии, но этот вопрос мы более подробно рассмотрим в ходе дальнейшего изложения.

Дж. Чу, М. Гелл-Манн и И. Нееман (21, 5Е) предложили новую классификацию сильно взаимодействующих частиц вещества, в которой разделение частиц на элементарные и сложные (составные) теряет смысл. Эти авторы предложили рассматривать частицы объединенными в группы (супермультиплеты) так, что частицы с разной массой покоя в каждой группе могут рассматриваться как различные возбужденные состояния одной и той же системы. Спектр масс частиц в этой схеме имеет близкую аналогию со спектром энергетических состояний атома. Каждая из частиц может с одинаковым основанием рассматриваться и как простая и как сложная. Для нахождения спектра масс предлагаются два метода: один из них основан на свойствах симметрии и теории групп, другой - на использовании так называемых траекторий Редже, т. е. кривых, связывающих массу частицы с ее внутренним моментом количества движения (спином) в каждой группе.

Многие физики в настоящее время считают, что октетная схема Гелл-Манна является наиболее удачной. В ее основе лежит принцип SU (3) симметрии. Восемь известных барионов рассматриваются как супермультиплет, соответствующий высшей симметрии; эта симметрия нарушается, и супермультиплет расщепляется в изотопические спиновые мультиплеты. Сильно взаимодействующие частицы описываются в пространстве "унитарного спина", который имеет восемь компонентов: первые три из них представляют собой компоненты изоспина, следующие четыре играют роль операторов, изменяющих странность, и последняя пропорциональна гиперзаряду. При нарушении высшей симметрии ("унитарной") сохраняются изоспин и гиперзаряд, а компоненты унитарного спина, соответствующие странности, изменяются; в результате происходит расщепление супермультиплета в изотопические спиновые мультиплеты. Таким образом, теория Гелл-Манна в какой-то степени учитывает глубокое диалектическое единство симметрии и асимметрии в мире элементарных частиц. Именно это позволило данной теории объединить сильно взаимодействующие частицы по стройной схеме и в то же время отразить их специфику (асимметрию свойств). В октетной схеме Гелл-Манна еще раз проявляется огромная эвристическая сила принципа симметрии. В рамках гипотезы "восьмеричного пути" на основе представлений симметрии и законов сохранения было предсказано существование Ω-гиперона, который был открыт на брукхэйвенском ускорителе в США (214). В свое время мы писали, что успехи, к которым привел учет в теории свойства унитарной симметрии, вселяют надежду, что экспериментальные исследования приведут к обнаружению и других предсказанных теорией частиц с дробным электрическим зарядом (± 1 / з и ± 2 / з заряда электрона), так называемых кварков. Последующее развитие физики оправдало эти надежды.

Укажем еще на некоторые попытки систематизации элементарных частиц. Так, несколько лет тому назад М. А. Марков (204) предложил оригинальную модель максимонов . Основываясь на идеях общей теории относительности, он показал, что макро- и микромир могут тесно смыкаться друг с другом. Формальным основанием для введения новых гипотетических элементов послужило то обстоятельство, что из важнейших мировых констант современной физической теории можно составить две комбинации с размерностью массы. Одна из этих величин имеет численное значение в одну миллионную часть грамма, а другая - в десять раз большее. Вводимые таким путем максимоны в 10 19 раз превышают по массе реальные адроны (сильно взаимодействующие частицы). Максимоны столь тяжелы для своих пространственных размеров, что "ни в каком сосуде на поверхности Земли эти частицы нельзя обнаружить. Они под действием сил тяжести проваливаются к центру планеты... Так как для рождения максимонов необходима энергия 10 28 эВ, то возможности рождения максимонов даже на ускорителях отдаленного будущего исключены" (53.1966.51, 878).

Анализ существующих моделей показывает некоторое различие в подходе их авторов к проблеме систематизации микрообъектов. Одни исходят из определенных свойств элементарных частиц и полей и пытаются разрешить проблему структуры микрообъектов путем введения новых свойств симметрии пространства - времени, другие, наоборот, сохраняют известные свойства пространства и времени, но для объяснения структуры микрочастиц вводят новые характеристики свойств материальных микрообъектов и полей. Такое различие в подходах к решению одной и той же проблемы вполне оправдано.

Услуга установки пластиковых окон в Томске по привлекательной стоимости от компании БФК.

Проблема элементарных частиц

На различных этапах продвижения «в глубь» вещества элементарными (бесструктурными) назывались различные частицы. В поисках основных «кирпичиков» мироздания человек первоначально установил, что все соединения состоят из «элементарных» молекул. Затем оказалось, что молекулы построены из «элементарных» атомов. Спустя столетия было обнаружено, что «элементарные» атомы построены из «элементарных» ядер и вращающихся вокруг них по орбитам электронов. Наконец, было открыто, что сами ядра построены из протонов и нейтронов, которые еще сравнительно недавно считались элементарными частицами, не обладающими внутренней структурой. После открытия в 1932г нейтрона казалось, что установлены основные строительные блоки, из которых построено обычное вещество, − это протоны, нейтроны, электроны и фотоны.

Но, начиная с 1933 года, число обнаруженных элементарных частиц стремительно растет. Когда их число перевалило за сотню, стало ясно, что такое огромное количество частиц не может выступать в качестве элементарных слагающих материи.

Вновь открытые элементарные частицы пытались классифицировать, в первую очередь, по массе. Так, появилось деление элементарных частиц на лептоны (легкие) и барионы (тяжелые). Известные нам электрон, позитрон и нейтрино относятся к лептонам, а протон и нейтрон к барионам. Существует еще одна группа элементарных частиц - мезоны (промежуточные).

Барионы и мезоны как частицы, участвующие в так называемом сильном взаимодействии (см. дальше) часто объединяют в группу адронов .

Проблема элементарных частиц, число которых перевалило за три с половиной сотни, долгое время казалась неразрешимой. Прорыв произошел, когда в 60-е годы была предложена кварковая модель , в основе которой лежала гипотеза о существовании новых истинно элементарных частиц, которые были названы кварками . В рамках кварковой модели все барионы рассматриваются как комбинации трех кварков, а мезоны – комбинации кварка и антикварка.

Основные характеристики элементарных частиц

Главными характеристиками элементарных частиц являются следующие:

Масса – m

Время жизни – τ

Электрический заряд – q

Барионное и лептонное числа (заряды) – B, L

Спин – s

Одной из главных характеристик субатомных частиц является их масса , которая одновременно определяет их энергию покоя. Среди частиц с нулевой массой наиболее известны фотоны . Масса нейтрино , возможно, также равна нулю. Электрон – самая легкая из стабильных частиц с ненулевой массой (me =0.911·10-30 кг). Протон обладает минимальной массой среди барионов

(m p =1.672·10 -27 кг). Масса нейтрона несколько больше массы протона: mn − mp

2.5me .

Электрон и протон – стабильные частицы. Время жизни свободного нейтрона порядка 900 секунд. Большинство элементарных частиц в высшей степени нестабильны, их времена жизни колеблются в пределах от нескольких микросекунд до 10-23 с.

Электрический заряд. Электрические заряды всех изученных элементарных частиц (кроме кварков!) являются целыми кратными величины e

1.6·10-19 Кл (e − элементарный заряд, численно равный заряду электрона, или протона). В нашем мире действует универсальный закон сохранения электрического заряда: суммарный электрический заряд изолированной системы сохраняется.

Барионное (B) и лептонное (L) числа (заряды) характеризуют принадлежность частицы к классу барионов или лептонов. У барионов нет лептонного заряда (L =0), для частиц-барионов B = 1, для античастиц B = -1. У лептонов отсутствует барионный заряд, а их лептонный заряд равен L = 1 – для частиц (электрон, нейтрино) и соответственно L = -1 – для античастиц (позитрон, антинейтрино).

Основное свойство элементарных частиц – это их способность к взаимопревращениям, которые протекают только при условии, что сохраняются все виды рассмотренных выше зарядов: электрический, барионный, лептонный (плюс законы сохранения энергии, импульса и момента импульса).

Спин (s ) – особая внутренняя характеристика элементарных частиц, связанная с их собственным (спиновым) моментом, который измеряется в

единицах h (постоянная Планка) или ћ =

(h перечеркнутое).

В единицах ћ спин всех элементарных частиц принимает значения или

целые: 0, 1, 2, … или полуцелые: 1

, …

Частицы с полуцелым спином называют фермионами , а частицы с целочисленным спином – бозонами . Фермионы подчиняются принципу запрета Паули, согласно которому две одинаковые частицы не могут находиться в одном квантовом состоянии.34 Все фермионы являются частицами вещества .

Бозоны, наоборот, все стремятся попасть в одно и то же состояние. Все бозоны являются частицами-квантами какого-нибудь поля . Из всех бозонов самыми распространенными во Вселенной являются фотоны.

34 Квантовое состояние полностью характеризуется набором из четырех квантовых чисел: три из которых связаны с трехмерностью пространства, а четвертое со спином.

Таким образом, фермионы выступают как «сугубые индивидуалисты», в то время как бозоны являются самыми настоящими «коллективистами».

Фундаментальные фермионы – лептоны и кварки

В настоящее время истинно элементарными частицами, из которых построено все вещество в нашем мире, считаются лептоны и кварки , спин которых равен ½.

Семейство лептонов состоит из частиц трех поколений: к первому поколению относятся электрон e - и электронного нейтрино ν e ; второе поколение – мюон μ и мюонное нейтрино ν μ и, наконец, третье поколение

таон τ - и таонное нейтрино ν τ :

μ −

ν e

νμ

ν τ

Электрон, мюон и таон появляются в паре только со своими нейтрино Огромная проникающая способность, отсутствие заряда и чрезвычайно малая, возможно, нулевая масса долгие годы делали их неуловимыми. Самой неуловимой из всех элементарных частиц оказалось тау-нейтрино, открытое лишь летом 2000 года.

Нейтрино настолько «бестелесны», что легко пронизывают толщу Земли и способны пройти слой свинца толщиной в несколько световых лет. Между тем, нейтрино, наряду с фотонами, самые распространенные частицы в нашем мире. Если все вещество, включая все галактики и межгалактическую пыль, равномерно размешать по всему объему Вселенной, то на каждый кубический метр пространства придется по одному протону и одному электрону. Фотонов же и нейтрино в миллиарды раз больше: в каждом кубическом сантиметре около 500 частиц.

Нейтрино впервые были введены Паули для объяснения β -распадов ядер,

при которых происходит превращение протона в нейтрон (так называемый β + - распад ) и нейтрона в протон:

→ 0 n

→ 1 p

+− 1 e

Отметим, что превращение нейтрона в протон энергетически выгодно (так как масса протона меньше массы нейтрона). Именно этим объясняется нестабильность свободного нейтрона.

Если процесс превращения нейтрона в протон происходит внутри ядра,

его называют β - - распад. При этом β - - частица является электроном.

Процесс превращения протона в нейтрон связан с затратами энергии и может происходить только внутри ядра. β + - распад сопровождается рождением частицы, полностью аналогичной электрону, но с противоположным по знаку электрическим зарядом, которая получила название позитрон +1 e 0 .

Помимо электрона (или позитрона) в β − распадах участвует еще одна элементарная частица, получившая название нейтрино − 0 ν 0 (частица,

сопровождающая β - − распад).

Античастицы

Существование электрона и позитрона наводит на мысль, что и другие элементарные частицы могут иметь своих «двойников». Действительно, практически у каждой частицы есть своя античастица, масса которой строго равна массе частицы, а знак заряда противоположен. Существует и достаточно редкий тип истинно нейтральных частиц, у которых нет двойников (фотон). В принципе, могут существовать антиатом , ядро которого состоит из антипротонов и антинейтронов, а электроны заменены антиэлектронами (позитронами), антимолекула и, наконец, антивещество , свойства которого ничем не будут отличаться от свойств обычного вещества.

Важнейшее свойство частиц и античастиц − это их способность к аннигиляции . Аннигиляция пары частица - античастица (от лат. annihilatio -

уничтожение, исчезновение) − один из видов взаимопревращения элементарных частиц, сопровождающееся выделением энергии, например, превращение электрона и позитрона при их столкновении в фотоны (электромагнитное излучение):

1 e0 + +1 e0 → 2γ

Возможен и обратный эффект – образование электрон-позитронной пары при столкновении двух фотонов. Понятно, что энергия фотонов должна быть не меньше удвоенной энергии покоя электрона E γ > 2m e c 2 (немного более

1МэВ).

Наш мир состоит из вещества. На Земле, в Солнечной системе и в непосредственно окружающем Солнечную систему космическом пространстве отсутствует сколько-нибудь заметное количество антивещества, так как из-за реакций аннигиляции тесное сосуществование частиц и античастиц невозможно. Те немногие античастицы, которые удается произвести в лабораторных условиях, рано или поздно гибнут. Длительное существование стабильных античастиц (например, антипротонов или позитронов) возможно только при низкой плотности вещества − в специальных накопителях заряженных частиц или в космическом пространстве. Вопросы о том, почему наш мир состоит из вещества, когда и почему возникла асимметрия нашей Вселенной, имеют принципиальное значение и продолжают привлекать внимание физиков-теоретиков.

Второе семейство фундаментальных элементарных частиц, из которых построены адроны (барионы и мезоны), получило название кварков . Существует шесть разновидностей кварков, (физики называют их «ароматами » – flavours ) которые, подобно лептонам, группируются в пары и образуют три поколения. Первое поколение – u и d кварки (up - верхний и down

Нижний); второе поколение - s и c кварки (strange - странный и charm –

очарованный) и, наконец, третье поколение – b и t кварки (beauty – красивый и true – истинный; иногда их называют bottom и top). Последний шестой t -кварк был обнаружен сравнительно недавно (в 1995 году).

Кварки являются фермионами (их спин равен ½, как и у лептонов). При этом возможны два внутренних квантовых состояния с проекциями вектора-

спина: +1/2 и –1/2

Барионное число для кварков равно одной трети B =1/3, для антикварков

− B = –1/3. У каждого кварка есть еще одна характеристика, которую физики назвали ароматом (странность , очарование и т.д.).

Самым удивительным является то, что кварки обладают дробным электрическим зарядом, величина которого составляет либо 2/3 от элементарного заряда (при этом заряд кварка положительный), либо 1/3 от заряда электрона (знак заряда при этом отрицателен).

Все барионы являются комбинациями трех кварков. Нуклоны – фундаментальная основа атомных ядер, являются самыми легкими барионами и состоят из кварков первого поколения. Протон состоит из двух u-кварков и одного d-кварка, нейтрон из двух d-кварков и одного u-кварка:

Легко проверить, что заряд протона при этом оказывается равным единице (2/3+2/3–1/3 = +1), а заряд нейтрона нулю (2/3 – 1/3 – 1/3 = 0).

Нейтрон тяжелее протона, потому что d-кварк тяжелее u-кварка.

Получает новое объяснение процессы β + – и β - – распадов как взаимопревращения кварков (u d ).

Мезоны получаются из сочетания пары кварк-антикварк . Ясно, что

барионное число мезонов равно нулю,

спин равен

нулю или единице.

Cочетания из трех антикварков образуют антибарионы (антипротоны,

антинейтроны и т.д.).

В таблице 1 представлены все фундаментальные фермионы –

структурные единицы строения вещества.

Таблица № 1

Фундаментальные фермионы

Фундамен-

Поколения

III-ье Электри-

фермионы

поколение

поколение

поколение

заряженные

электрон

−1

νμ

ντ

нейтрино

электронное

очарованный

истинный

красивый

Все многообразие адронов возникает за счет различных сочетаний

приведенных

ароматов.

соответствуют связанные состояния, построенные только из u - и d -кварков. Если же в связанном состоянии, наряду с u - и d -кварками, имеется, например, s - или c -кварк, то соответствующий адрон называют странный или

очарованный.

То обстоятельство, что из различных комбинаций кварков можно получить все известные барионы и мезоны, символизировало главный триумф теории кварков. Однако все усилия обнаружить одиночные кварки оказались тщетными. Сложилась парадоксальная ситуация. Внутри адронов кварки, несомненно, существуют. Об этом свидетельствует не только рассмотренная кварковая систематика адронов, но и прямое «просвечивание» нуклонов быстрыми электронами. В этом эксперименте (по сути, полностью аналогичном опыту Резерфорда) было обнаружено, что внутри адронов электроны рассеиваются на точечных частицах с зарядами, равными –1/3 и +2/3 и спином, равным ½, то есть, получены прямые физические доказательства существования кварков внутри адронов. А вот вырвать кварки из адронов невозможно. Это явление получило название «конфаймент»

(confinement- пленение, англ.).

Фундаментальные взаимодействия

Следующий принципиальный вопрос, на который должна ответить наука для объяснения строения вещества, связан с природой и характером взаимодействия между частицами, что при определенных условиях приводит к образованию связанных состояний. Что же заставляет кварки объединяться в нуклоны, нуклоны в ядра, ядра и электроны в атомы, атомы в молекулы? Почему во Вселенной существуют скопления вещества в виде планет, звезд, галактик? Какова природа сил, вызывающих все те изменения, которые происходят в нашем материальном мире?

Оказывается, все происходящее в природе можно свести всего к

четырем фундаментальным взаимодействиям

Роль фундаментальных взаимодействий в природе

Гравитационное взаимодействие является самым слабым и в то же время самым универсальным. Гравитационное взаимодействие действует между любыми объектами, обладающими массой или энергией. Именно гравитация не позволяет Вселенной развалиться на части, собирая вещество в планеты и звезды, удерживая планеты на орбитах, «связывая» звезды в галактики. Вообще, в астрономических масштабах, гравитационное взаимодействие играет определяющую роль. В микромире гравитацией можно пренебречь по сравнению с другими более интенсивными взаимодействиями.

Электромагнитное взаимодействие присуще всем частицам,

обладающим электрическим зарядом. Как и гравитационное, электромагнитное взаимодействие является дальнодействующим, а закон, определяющий силу, действующую между точечными покоящимися зарядами, аналогичен закону тяготения – это известный из школы закон Кулона:

m 1 m 2

q 1 q 2

Однако, в отличие от гравитации, которая всегда является притяжением, электрическое притяжение существует только между зарядами разного знака, в то время как одноименные заряды отталкиваются. Именно благодаря электромагнитному взаимодействию возможно образование атомов и молекул. Межмолекулярные силы, определяющие свойства различных агрегатных состояний вещества, также имеют электрическую природу. К нему фактически сводится большинство наблюдаемых физических сил (упругости, трения и др.), именно оно лежит в основе химических превращений веществ и всех наблюдаемых электрических, магнитных и оптических явлений.

Сильное и слабое взаимодействия проявляются только в микромире, на субъядерном уровне.

Сильное взаимодействие присуще кваркам и образованиям из кварков – адронам . Основная функция сильного взаимодействия – соединять кварки (и антикварки) в адроны. Ядерные силы, которые объединяет нуклоны в ядра, являются специфическими отголосками сильного взаимодействия (его часто называют остаточным сильным взаимодействием).

Слабое взаимодействие присуще всем фундаментальным фермионам. Для нейтрино – это единственное взаимодействие, в котором они участвуют. В отличие от сильного взаимодействия, функция слабого взаимодействия заключается в изменении природы (аромата) частиц, то есть в превращении одного кварка в другой (то же относится и к лептонам).

В отсутствие слабого взаимодействия стабильными были бы не только протон и электрон, но и мюоны, π − мезоны, странные и очарованные частицы, которые распадаются в результате слабого взаимодействия. Если бы удалось «выключить» слабое взаимодействие, то погасло бы Солнце,

поскольку был бы невозможен процесс превращения протона в нейтрон (β - распад), в результате которого четыре протона превращаются в 2 Не4 , два позитрона и два нейтрино (так называемый водородный цикл, который служит основным источником энергии Солнца и большинства звезд.).

Характеристики фундаментальных взаимодействий

Об интенсивности взаимодействий можно судить по скорости процессов, которые они вызывают. Обычно сравнивают между собой скорости процессов при энергии 1 ГэВ, характерных для физики элементарных частиц. При таких энергиях процесс, обусловленный сильным взаимодействием,

происходит за время 10-24 с, электромагнитный процесс за время 10-21 с, характерное же время процессов, происходящих за счет слабого взаимодействия, гораздо больше: 10-10 с.