Что такое генератора постоянного тока. Генератор постоянного тока: устройство, применение

В данной статье рассмотрим генератор постоянного тока и его применение в различных сферах. Генератор - это, проще говоря, "создатель" энергии, которая применяется впоследствии в приборах, предназначенных для преобразования этой энергии в конечном счете с пользой для человека. А какая польза для нас может быть от этого генератора? И где, собственно, его применяют, и для чего?

Польза от генератора

Его основное применение может быть на заводах, фабриках, в строительстве объектов. Также на электростанциях и даже на судах применяется постоянный ток. Генератор постоянного тока является востребованным, и его применение возрастает, только потому, что его мощность, в отличие от переменного типа, больше при одинаковых габаритных размерах. А самое главное - это высокая надежность его простой схемы, позволяющей работать намного дольше и значительно увеличивающей срок службы.


Устройство

Видов указанного прибора существует огромное количество, но принцип всегда один и тот же. Вот как раз и следует рассмотреть принцип действия генератора постоянного тока. Сначала мы его сравним с генератором переменного типа, чтобы понять, чем же они различаются. Генератор постоянного тока имеет ротор с конструкцией барабанного типа. А крепление индуктора находится в статоре, который неподвижен и сделан из чугуна или стали. Правда, из стали отливается в редких случаях, потому что данный сплав предназначен для металлургических заводов узкого профиля.

Внутри статора есть специальные крепления, на которые наматываются провода из сплава меди, от которых мы получаем магнитное поле. В принципе отличий немного, но для получения постоянного тока, без выпрямителей, данный вид намного эффективнее, чем устройство переменного типа. Генератор постоянного тока имеет наиболее распространенную модель, называемую коллекторной, которая, в отличие от переменного типа, имеет раздельные кольца. К ним присоединяются концы обмотки якоря генератора. Эти раздельные кольца имеют изоляцию между собой и находятся на общем цилиндре, то есть вращаются на общей оси, а также на них прижимаются щетки из сплава на основе меди и графита. И собственно, с этих щеток выводится постоянный ток во внешнюю цепь.

Сварочный генератор

Главным образом постоянный ток применяется в сварочных аппаратах. Сварочный генератор постоянного тока чаще всего используют в местах, где отсутствует электрический переменный ток.


Существуют данные устройства и переменного тока. Но как показывает практика, их меньше используют в связи с меньшей универсальностью для питания сварочной дуги. В качестве топлива для сварочного постоянного генератора может служить дизель либо бензин. Бензиновые бывают более компактные и поэтому их удобно использовать в домашнем хозяйстве или на приусадебном участке.

Давайте разберем принцип действия генератора постоянного тока , познакомимся с его конструктивными особенностями и принципом действия.

Работает основываясь на использовании закона электромагнитной индукции . Согласно этому закону, в проводнике, который движется в магнитном поле и пересекает магнитный поток, индуцируется ЭДС.

Магнитопровод по которому замыкается магнитный поток является одной из основных частей генератора постоянного тока .

Магнитная цепь генератора постоянного тока (изображен на рисунке 1) состоит из неподвижной части — статора (1) и вращающейся части — ротора (4).

Статор представляет собой стальной корпус, к которому присоединены остальные детали машины, в том числе магнитные полюсы (2). На магнитные полюсы насажена обмотка возбуждения (3), которая питается постоянным током и создает основной магнитный поток Ф0.

Магнитная цепь генератора постоянного тока с четырьмя полюсами.

Листы, из которых собирается магнитная цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины собирают из штампованных стальных листов с пазами по окружности и с отверстиями, предназначенными для вала и вентиляции. Рабочая обмотка генератора постоянного тока вставляется в пазы ротора (5 на изображении 1). Этой обмоткой индуцируется ЭДС основным магнитным потоком. Обмотку также называют обмоткой якоря, поэтому ротор генератора постоянного тока принято называть якорем.

Значение ЭДС генератора постоянного тока может изменяться, но ее полярность остается величиной постоянной. Принцип действия генератора постоянного тока изображен на рисунке 3.

Магнитный поток создается полюсами постоянного магнита. Допустим, обмотка якоря состоит из одного витка, у которого концы присоединены к различным полукольцам, находящимся в изоляции друг от друга. Из этих полуколец формируется коллектор, совершающий вращения вместе с витком обмотки якоря. Одновременно с этим вдоль коллектора двигаются неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется ЭДС: e = B*l*v

  • где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

При совпадении плоскости витка с плоскостью осевой линии полюсов (при этом виток расположен вертикально), проводники пересекают максимальный магнитный поток . В это время в них индуцируется максимальный показатель ЭДС. В том случае когда виток принимает горизонтальное положение, ЭДС в проводниках равна нулю.

В проводнике направление ЭДС определяется по правилу правой руки (на рисунке 3 оно показано в виде стрелок). Когда при вращении витка проводник переходит под другой полюс, направление ЭДС в нем меняется на обратное. Но поскольку коллектор вращается вместе с витком, а щетки неподвижны, то к верхней щетке всегда присоединен проводник, который находится под северным полюсом, ЭДС которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению ЭДС на щетках — е (рисунок 4).

Простейший генератор постоянного ток а.

Изменение во времени ЭДС простейшего генератора постоянного тока.

Несмотря на то что ЭДС простейшего генератора постоянного тока постоянна в направлении, по своему значению она изменяется. Поскольку за один оборот витка ЭДС принимает 2 раза значение равное нулю и 2 раза максимальное. Для большинства приемников постоянного тока ЭДС с такой большой пульсацией непригодна и, строго говоря, ее нельзя назвать постоянной.

Чтобы уменьшить пульсацию, обмотку якоря генератора постоянного тока делают из большого числа витков (катушек), а коллектор из большого числа коллекторных пластин, которые изолированы друг от друга.


Для того чтобы рассмотреть подробнее процесс сглаживания пульсаций возьмем в качестве примера обмотку кольцевого якоря (рисунок 5). Она состоит из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь двигается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, которые расположены на внешней стороне якоря, индуцируется ЭДС (направление движения указано стрелками).

Обмотка якоря представляет собой замкнутую цепь, которая состоит из последовательно соединенных витков. При этом обмотка якоря относительно щеток представляет собой две параллельные ветви. На рисунке 5а одна параллельная ветвь состоит из катушки 2, вторая из катушки 4 (в катушках 1 и 3 ЭДС не индуцируется, и они обеими концами соединены с одной щеткой). На рисунке 5б якорь изображен в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая из последовательно включенных катушек 3 и 4.

Схема простейшего генератора постоянного тока с кольцевым якорем.


При вращении якоря по отношению к щеткам каждая катушка имеет постоянную полярность.

На рисунке 6а показано как при вращении якоря изменяется ЭДС катушек во времени. ЭДС на щетках равна ЭДС каждой из параллельных ветвей обмотки якоря.

Из рисунка 5 видно, что ЭДС параллельной ветви равна или сумме ЭДС двух соседних катушек или ЭДС одной катушки:

Как результат этого, заметно уменьшаются пульсации ЭДС обмотки якоря (рисунок 6б). А значит увеличивая количество витков и коллекторных пластин можно получить практически постоянную ЭДС обмотки якоря.

Изменение во времени ЭДС катушек и обмотки кольцевого якоря.

Принцип работы генератора постоянного тока основан на возникновении ЭДС в рамке, вращающейся в магнитном поле (рис. 6-1, а). За один оборот в каждой рабочей (активной) части рамки ЭДС дважды меняет знак. Чтобы ток во внешней цепи имел только одно направление (постоянное), применяют коллектор - два полукольца, соединенные с концами рамки, а рамку соединяют с внешней цепью через вращающийся коллектор и неподвижные щетки. Как только активная сторона рамки начнет пересекать линии магнитной индукции в противоположном направлении по сравнению с

предыдущим, соединенное с этой стороной полукольцо коллектора начнет соприкасаться с другой щеткой. Благодаря такому устройству направление тока во внешней цепи остается неизменным, хотя его значение изменяется (пульсирует, рис. 6-1, б).

Устройство промышленного генератора постоянного тока изображено на рисунке 6-2. На внутренней поверхности станины изготовленной из цельного чугунного литья, жестко укреплены главные полюсы 2 с обмотками возбуждения и дополнительные полюсы с обмотками для компенсации ЭДС самоиндукции и реакции якоря. В большинстве случаев электромагниты питаются от самого генератора. Внутри станины помещается якорь 3, представляющий собой металлический цилиндр, набранный из штампованных пластин электротехнической стали. В продольных пазах на поверхности якоря размещается обмотка якоря, состоящая из соединенных между собой секций. Для сглаживания пульсаций ЭДС и тока обмотка


якоря равномерно размещена по всей поверхности, магнитное сопротивление между полюсами уменьшается благодаря стальному сердечнику якоря. Выводы обмоток припаивают к изолированным друг от друга и от корпуса машины медным пластинам коллектора 4, причем конец одной секции и начало следующей припаивают к одной и той же пластине. Коллектор жестко укреплен на валу якоря, на этом же валу крепят и вентилятор. Вал якоря помещается в подшипники подшипниковых щитов 5, укрепляемых на боковых сторонах станины. Между якорем и полюсами статора образуется незначительный воздушный зазор, благодаря которому якорь может свободно вращаться. На цилиндрическую поверхность коллектора накладываются угольные щетки, вставленные в щеткодержатели 6. Для уменьшения сопротивления щетки часто прессуются из смеси угольного и медного порошка.

Машины постоянного тока часто делают многополюсными (рис. 6-3), при этом в каждой секции обмотки за один оборот значение и знак ЭДС изменяются столько раз, сколько полюсов. Магнитная цепь такой машины более сложная, при этом число пар щеток равно числу пар полюсов, а щетки одинаковой полярности соединяют вместе.

Принципы работы генератора постоянного тока рассмотрим более подробно.

Если якорь изготовить в виде кольца и на нем разместить обмотку в виде замкнутого тороида, то такой якорь называют кольцевым, а обмотку - спиральной. При вращении этого якоря в магнитном поле в витках его обмотки будут индуцироваться ЭДС (рис. 6-4, а). Оказывается, что в витках одной половины обмотки ЭДС имеет один знак, в витках другой половины - противоположный. Если витки равномерно распределены по поверхности якоря, то тока в обмотке не будет, так как действие ЭДС обеих половин взаимно компенсируется. Если, например, у витков с внешней стороны частично снять изоляцию и с двух противоположных сторон наложить две неподвижные щетки (а и b) так, чтобы при вращении якоря они могли касаться каждого витка, то легко заметить, что вся обмотка как бы разделится пополам и при вращении якоря витки одной половины обмотки будут постепенно переходить в другую, при этом число витков каждой половины, полярность и значение ЭДС будут оставаться неизменными. Если теперь подключить нагрузку к щеткам, то во внешней цепи и в каждой половине обмотки установится постоянный ток.


Очевидно, что для более полного использования ЭДС обмотки щетки надо подключать в тех точках, где ЭДС не наводится. Прямая, проходящая через две такие точки, называется геометрической нейтралью (ГН). При таком расположении щеток обмотка оказывается разделенной на две параллельные ветви, соединенные между собой и внешней цепью щетками. Если щетки сместить относительно геометрической нейтрали, то в части витков каждой параллельной ветви ЭДС будет иметь противоположную полярность, а под щетками может начаться искрение, так как в закорачиваемых щетками витках (секциях) ЭДС отлична от нуля.

Кольцевой якорь можно усовершенствовать, если не снимать изоляцию с витков обмотки, а сделать от них отводы, соединенные с пластинами коллектора, а щетки наложить на коллектор (рис. 6-4, б). Если у такой машины сделать четыре полюса, то обмотка разделится на четыре части (рис. 6-5, а). Если далее вместо двух щеток поставить четыре и одноименные соединить между собой (рис. 6-5, б), то обмотка будет иметь четыре параллельные ветви. Легко видеть, что с увеличением числа параллельных ветвей ток нагрузки может быть соответственно увеличен.

Рассмотренный выше кольцевой якорь со спиральной обмоткой имеет существенные недостатки. Во-первых, магнитный поток замыкается через стенку кольца (якоря), минуя внутреннюю полость, поэтому активной стороной каждого витка обмотки является та, которая расположена на поверхности, а внутренняя часть витка для получения ЭДС не используется и служит лишь соединительным проводником. Это обстоятельство приводит к нерациональному расходу меди. Во-вторых, спиральную обмотку нельзя сделать по шаблону, поэтому в настоящее время машины с кольцевым якорем не изготовляют.

Недостатки кольцевого якоря устраняют заменой его барабанным. Обмотки барабанного якоря (рис. 6-6) укладывают в специальные пазы на поверхности цилиндра (якоря) в виде отдельных секций, определенным образом соединенных с пластинами коллектора и между собой. Секция - это часть обмотки между двумя соседними отводами к коллектору. Обе стороны каждой секции являются активными; секции изготовляют по шаблону.

Добавить сайт в закладки

Кольцевой якорь со спиральной обмоткой в настоящее время не применяется, так как при спиральной обмотке более полови­ны длины ее не участвует в образовании ЭДЕ, а служит лишь для соединения между собой активных проводников, лежащих на внешней стороне кольцевого якоря.

Значительно лучше использована медь в обмотках относи­тельно сложного барабанного якоря. Барабанный якорь пред­ставляет собой цилиндр, собранный из листов электротехнической стали, в пазах которого только с внешней стороны барабана размещаются проводники обмотки якоря.

Машина постоянного тока обратима: если машину вращает первичный двигатель и магнитное поле машины возбуждено, то в якоре наводится ЭДС и через коллектор и щетки машина посылает постоянный ток во внешнюю цепь. В якоре этот ток, вза­имодействуя с полем машины, создает тормозящий момент, пре­одолеваемый первичным двигателем. В таких условиях машина работает генератором.

Если же якорь и обмотка возбуждения машины включены под постоянное напряжение, то ток, проходя­щий через обмотку якоря, взаимодействуя с полем машины, со­здает вращающий момент, приводящий якорь во вращение, при этом в обмотке якоря наводится анти ЭДС. В таких усло­виях машина работает в режиме двигателя, превращая электри­ческую энергию в механическую.