Устройство плавного пуска электродвигателя. Пример применения. Устройства плавного пуска: правильный выбор

Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов. И если теоретически методы их снижения были хорошо разработаны уже довольно давно, то вот практически все эти разработки (использование пусковых резисторов и реакторов, переключение со звезды на треугольник, использование тиристорных регуляторов напряжения и т.д.) применялись очень в редких случаях.

Все резко изменилось в наше время, т.к. благодаря прогрессу силовой электроники и микропроцессорной техники на рынке появились компактные, удобные и эффективные устройства плавного пуска электродвигателей (софтстартеры) .

Устройства плавного пуска асинхронных двигателей - это устройства, которые значительно увеличивают срок эксплуатации электродвигателей и исполнительных устройств, работающих от вала этого двигателя. При подаче напряжения питания обычным способом, происходят процессы, разрушающие электродвигатель.

Пусковой ток и напряжение на обмотках двигателей, в момент переходных процессов, значительно превышают допустимые значения. Это приводит к износу и пробою изоляции обмоток, «подгоранию» контактов, значительно сокращает срок службы подшипников, как самого двигателя, так и устройств «сидящих» на валу электродвигателя.

Для обеспечения необходимой пусковой мощности, приходится увеличивать номинальную мощность питающих электрических сетей, что приводит к значительному удорожанию оборудования и перерасходу электроэнергии.

Кроме того «просадка» напряжения питания в момент пуска электродвигателя - может привести к порче оборудования, задействованного от этих же источников питания, эта же «просадка» наносит серьезный ущерб оборудованию электроснабжения, уменьшает срок его службы.

В момент пуска электродвигатель является серьезным источником электромагнитных помех, нарушающих работу электронного оборудования, запитанного от этих же электрических сетей, или находящихся в непосредственной близости от двигателя.

Если произошла аварийная ситуация и двигатель перегрелся или сгорел, то, в результате нагрева, параметры трансформаторной стали изменятся настолько, что номинальная мощность, отремонтированного двигателя, может снизиться на величину до 30%, в результате, этот электродвигатель окажется непригодным к использованию на прежнем месте.

Устройство плавного пуска электродвигателей объединяет функции плавного пуска и торможения, защиты механизмов и электродвигателей, а также связи с системами автоматизации.

Плавный пуск с помощью софтстартера реализуется медленным подъемом напряжения для плавного разгона двигателя и снижения пусковых токов. Регулируемыми параметрами обычно являются начальное напряжение, время разгона и время торможения электродвигателя. Очень маленькое значение начального напряжения может очень сильно уменьшить пусковой момент электродвигателя, поэтому оно обычно устанавливается 30-60% от значения номинального напряжения.

При запуске напряжения скачком увеличивается до устанволенного значения начального напряжения, а потом плавно за заданное время разгона поднимается до номинального значения. Электродвиагетль будет при этом плавно и быстро разгоняться до номинальной скорости.

Применение софстартеров позволяет уменьшить пусковой «бросок» тока до минимальных значений, уменьшает количество применяемых реле и , выключателей. Обеспечивает надежную защиту электродвигателей от аварийной перегрузки, перегрева, заклинивания, обрыва фазы, снижает уровень электромагнитных помех.

Устройства плавного пуска электродвигателей просты в устройстве, монтаже и эксплуатации.

Пример схемы подключения устройства плавного пуска электродвигателя

При выборе устройства плавного пуска необходимо учитывать следующее:

1. Ток электродвигателя. Необходимо выбирать устройство плавного пуска по полному току нагрузки двигателя, который не должен превышать ток предельной нагрузки устройства плавного пуска.

2. Максимальное число запусков в час. Обычно оно ограничено софтстартером. Необходимо, что-бы количество запусков в час электродвигателя не превышало этот параметр.

3. Напряжение сети. Каждое устройство плавного пуска рассчитано на работу при определенном напряжении. Напряжение сети питания должно соответствовать паспортному значению софтстартера.

Данный раздел посвящен теоретическим основам частотного регулирования и принципам работы устройства плавного пуска.

Принцип работы преобразователя частоты

Частотный преобразователь - устройство, позволяющее осуществлять регулирование скорости вращения электродвигателей посредством изменения частоты электрического тока.

Для понимания процесса частотного регулирования для начала необходимо вспомнить из курса электротехники принцип работы асинхронного электродвигателя.

Вращение вала электродвигателя происходит за счет магнитного поля создаваемого обмотками статора. Синхронная частота вращения магнитного поля зависит от частоты напряжения питающей сети f и выражается следующей зависимостью:

где p – число пар полюсов магнитного поля.

Под действием нагрузки частота вращения ротора электродвигателя несколько отличается от частоты вращения магнитного моля статора вследствие скольжения s:

Следовательно частота вращения ротора электродвигателя представляет собой зависимость от частоты напряжения питающей сети:

Таким образом требуемую частоту вращения вала электродвигателя np можно получить путем изменения частоты напряжения сети f. Скольжение при изменении частоты вращения не увеличивается, а соответственно потери мощности в процессе регулирования незначительны.

Для эффективной работы электропривода и обеспечения максимальных значений основных характеристик электродвигателя требуется вместе с частотой изменять и питающее напряжение.

Функция изменения напряжения в свою очередь зависит от характера момента нагрузки. При постоянном моменте нагрузки Mc = const напряжение на статоре должно регулироваться пропорционально частоте:

Для случаев вентиляторного режима:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, плавное регулирование частоты обеспечивается одновременным регулированием частоты и напряжения на статоре асинхронного двигателя.


Рис 1. Схема частотного преобразователя

На рис. 1. представлена типовая блок-схема низковольтного преобразователя частоты. В нижней части рисунка для каждого блока наглядно изображены графики входных и выходных напряжений и токов.

Сначала напряжение сети (U BX) поступает на вход выпрямителя (1). Далее для сглаживание выпрямленного напряжения (U ВЫПР) применяется конденсаторный фильтр (2). Затем уже постоянное напряжение (U d) подается на вход инвертора (3), где происходит преобразование тока из постоянного обратно в переменный, формируя тем самым выходной сигнал с необходимыми значениями напряжения и частоты. Для получение сигнала синусоидальной формы применяются сглаживающий фильтр (4)

Для более наглядного понимания принципа работы инвертора рассмотрим принципиальную схему частотного преобразователя на рис. 2


Рис. 2 – принципиальная схема низковольтного преобразователя частоты

В основном в инверторах применяется метод широтно-импульсной модуляции (ШИМ). Принцип данного метода заключается в попеременном включении и выключении ключей генератора, формируя импульсы различной длительности (рис. 3). Синусоидальный сигнал получается за счет индуктивности двигателя или применения дополнительного сглаживающего фильтра.


Рис. 3. Выходной сигнал преобразователя частоты

Таким образом, управляя процессом включения-выключения инверторных ключей, мы можем формировать выходной сигнал нужной частоты, а следовательно управлять технологическими параметрами механизма путем изменения частоты вращения привода.

Теория и принцип работы устройства плавного пуска

В связи с особенностями переходных процессов происходящих во время пуска электродвигателя токи обмоток достигают 6-8 кратной величины номинального тока электродвигателя, а вращающий момент на его валу достигает 150-200% от номинального значения. Как следствие это увеличивает риск поломки механической части двигателя, а также приводит к падению напряжения питающей сети.

Для решение данных проблем на практике применяется устройства плавного пуска электродвигателей , обеспечивающие постепенное увеличение токовой нагрузки.

Помимо снижения токовых нагрузок мягкие пускатели позволяют: .

  • Снизить нагрев обмоток двигателя;
  • Снизить просадки напряжения во время пуска;
  • Обеспечить торможение и последующий запуск двигателя в установленный момент времени;
  • Снизить гидроудары в напорных трубопроводах при работе в составе привода насоса;
  • Снизить электромагнитные помехи;
  • Обеспечить комплексную защиту электродвигателя при пропадании фазы, перенапряжении, заклинивании и пр;
  • Повысить надежность и долговечность системы в целом.

Принцип работы УПП

Типовая схема устройства плавного пуска представлена на рис. 1


Рис. 1. Типовая схема устройства плавного пуска

Изменением угла открытия тиристоров осуществляется регулирования выходного напряжения УПП. Чем больше угол открытия тиристора - тем больше величина выходного напряжения, питающего электродвигатель.


Рис. 2. Формирование выходного напряжения УПП

Принимая во внимание то что величина крутящего момента асинхронного электродвигателя пропорциональна квадрату напряжения, то снижение напряжения снижает величину вращающего момента вала двигателя. При помощи такого метода пусковые токи электродвигателя снижаются до величины 2...4 I НОМ, при этом время разгона несколько увеличивается. Наглядное изменение механической характеристики асинхронного электродвигателя при понижении напряжении показано на рис. 3


Рис 3. Механические характеристика двигателя

Снижение токовой нагрузки в процессе мягкого пуска электродвигателя наглядно показаны на рис. 4.


Рис. 4. Диаграмма плавного пуска асинхронного электродвигателя показана

На рис. 1. продемонстрирована типовая схема устройства плавного пуска однако стоит отметить, что реальная схема мягкого пускателя будет завесить в первую очередь от условий его эксплуатации. Например, для бытового бытовой инструмента и электродвигателя привода промышленной дробилки требуются различные устройства плавного пуска. Важнейшими параметрами, определяющими режимы работы устройств плавного пуска, являются время пуска и максимальное превышение по току.

В зависимости от этих параметров выделяют следующие режимы работы устройств плавного пуска:

  • Нормальный : пуск 10-20 секунд, ток при пуске не более 3,5 I ном.
  • Тяжелый : пуск порядка 30 секунд, тока при пуске не превышает 4,5 I ном
  • Сверхтяжелый : время разгона не ограничено, системы с большое инерцией, пусковой ток в диапазоне 5,5…8 I ном

Устройства плавного пуска можно разделить на следующие основные группы:

1. Регуляторы пускового момента
Данный тип устройств осуществляет контроль только одной фазы трехфазного двигателя. Контроль одной фазой дает возможность снижать пускового момент электродвигателя двигателя, но при этом снижение пускового тока происходит незначительное. Устройства данного типа не могут применяться для уменьшения токовых нагрузок в период пуска, а также для пуска высокоинерционных нагрузок. Однако они нашли применение в системах с однофазными асинхронными электродвигателями.

2. Регуляторы напряжения без обратной связи
Данный тип устройств работает по следующему принципу: пользователь задает величину начального напряжения и время его нарастания до номинальной величины и наоборот. Регуляторы напряжения без обратной связи могут осуществлять контроль как двух так и трех фаз электродвигателя. Такие регуляторы обеспечивают снижение пускового тока снижением напряжения в процессе пуска.

3. Регуляторы напряжения с обратной связью
Данный тип УПП представляет собой более совершенную модель описанного выше устройств. Наличие обратной связи по позволяет управлять процессом увеличения напряжения добиваясь оптимального режима пуска электродвигателя. Данные о токовой нагрузке позволяет также организовать комплексную защиту электродвигателя от перегрузки, перекоса фаз и т.п.

4. Регуляторы тока с обратной связью
Регуляторы тока с обратной связью представляют собой наиболее совершенные устройства плавного пуска. Принцип работы основан на прямом регулировании тока а не напряжения. Это позволяет добиться наиболее точное управление пуском электродвигателя, а также облегчает настройку и программирование УПП.

Устройства плавного пуска электродвигателей относятся к классу комбинированных приборов. Основной задачей их принято считать распределение энергии. Также они помогают управлять мощностью электродвигателей. Для обеспечения непрерывной работы мотора они подходят идеально.

При необходимости питание от сети они отключат довольно быстро. На сегодняшний день устройства плавного пуска активно применяются в промышленности. В частности модели можно встретить в сверлильных и фрезерных станках. Для лифтовых станций такие приборы подходят.

Схема стандартного пускателя

Стандартная схема устройства плавного пуска электродвигателя представляет собой набор контактов. За счет смены их положения меняется параметр входного напряжение. Сердечники у моделей часто устанавливаются импульсного типа. Электрические катушки в устройствах находятся за контактами.

В данном случае тепловые реле используются с низкой и высокой частотой. Выводов для подключения оборудования должно быть предусмотрено два. Непосредственно передвижение контактов осуществляется благодаря пружинам. Блоки управления существуют разнообразные. Клеммы у моделей обычно располагаются под нижней крышкой. Фильтры усиления устанавливаются не на все пускатели.


Однофазные модификации

Однофазный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), по конструкции является очень простым. В данном случае катушка подбирается с первичной обмоткой. Разомкнутых контактов у моделей наблюдается не более четырех единиц. В данном случае сердечник располагается под катушкой. Непосредственно частоту обязано держать не ниже 55 Гц.

Выводов для подключения к двигателю в устройствах предусмотрено два. Пружины у моделей применяются плоские. В зависимости от размеры пускателей меняются. Некоторые модификации оснащаются регуляторами чувствительности. Клеммы у них находятся возле нижней панели. Применяется устройство плавного пуска часто для промышленных станков.

Устройство двухфазных моделей

Двухфазный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), выпускается только с импульсным сердечником. В данном случае тепловые реле устанавливаются низкочастотные. Непосредственно контактов у моделей может быть до четырех единиц. Для изменения фазы используется триггер. Также во многих устройствах устанавливаются фильтры усиления. Подключаются модели через выводы на задней панели. Клеммы в таких устройствах располагаются над верхней пластиной. Блоки управления часто имеются с регулятором чувствительности. Встретить двухфазные модели на производстве можно часто. Для фрезерного оборудования они подходят хорошо.

Модификации трехфазного типа

Устройства плавного пуска трехфазного электродвигателя работают за счет изменения положения контактов. Катушки в данном случае во многих моделях располагаются за сердечниками. Серия разомкнутых контактов устанавливается на специальной платформе. Выводы у трехфазных пускателей могут находиться над блоком управления. Однако чаще всего они располагаются у задней панели.

Непосредственно тепловые реле в таких устройствах имеются на 60 Гц. Чувствительность регулировать в оборудовании можно за счет рычага. Спусковой механизм устанавливается над сердечником. На сегодняшний день трехфазные пускатели часто работают с судовыми двигателями.

Модели для синхронных двигателей

Синхронный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), отличается пониженной частотностью. Достигается это за счет использования сердечников закрытого типа. Катушки у таких моделей входное напряжение обязаны выдерживать на уровне 200 В.. Тепловые реле монтируются над верхней платиной. Система замыкающих контактов располагается по обе стороны сердечника.

Для увеличения чувствительности устройства используется специальный регулятор. Клеммы у моделей могут монтироваться у верхней и задней части панели. Фильтры усиления используются довольно редко. При этом триггеры устанавливаются часто.

Пускатели асинхронных двигателей

На сегодняшний день асинхронных прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), производится с различной комплектацией. у моделей устанавливаются на 220 и 300 В.. В данном случае сердечники часто используются открытого типа. В среднем параметр полосы пропускания у них достигает 5 мп. Однако на рынке представлены также сердечники импульсного типа. Отличаются они от других моделей повышенной чувствительностью. При этом изнашиваются они крайне медленно, и способны долго проработать. Разомкнутые контакты в устройствах находятся у верней пластины.

Тепловые реле устанавливаются исключительно низкочастотного типа. Выходное напряжение они минимум обязаны выдерживать на уровне 230 В.. Подключение многих моделей осуществляется через выводы. Для смены положение нижних контактов применяются пружины. Устанавливаются часто они не большого диаметра. Блоки управления во всех устройствах оснащаются блокираторами. Регуляторы чувствительности также присутствуют во всех конфигурация. По типу триггеров модели довольно сильно отличаются. Если рассматривать устройства с катушками на то они чаще всего имеются волнового типа. Однако фазовые аналоги также представлены на рынке.

Отдельного внимания в таких приборах заслуживает спусковой механизм. Как правило, состоит он из наборов проводников. В наше время наиболее распространенными считаются модификации на четыре контакта. Если рассматривать модели с катушками индуктивности на 300 В, то в данном случае триггеры всегда используются фазового типа.


Особенности моделей пуска высоковольтного двигателя

Пускатели высоковольтного типа активно используются в атомной энергетике. Катушки у таких устройств часто устанавливаются на 300 В.. Параметр пропускной способности колеблется в районе 5 мп. Непосредственно контакты имеются как подвижные, так и не подвижные. Сердечники устанавливаются импульсного, а также конденсаторного типа. Отличаются они между собой по показателю чувствительности. На сегодняшний день более надежными принято считать импульсные модификации.

Тепловые реле для приборов походят только низкочастотные. Параметр рабочего тока в системе достигает 5 А.. Для регулировки пластин используются плоские пружины. Блоки управления в пускателях имеются с блокираторами, и без них. Спусковые механизмы часто устанавливаются на трех проводниках. Фильтры усиления в данном случае используются очень редко.

Отдельного внимания в приборах заслуживает тип триггеров. Если рассматривать низкочастотные устройства, то они подбираются только волнового типа. С понижением чувствительности прибора они справляются хорошо. Подключается устройство плавного пуска высоковольтного электродвигателя через замыкание выводов. Часто они располагаются на верней крышке.


Модель серии ABB

Устройство плавного пуска электродвигателя ABB отличается наличием фазовых триггеров. Их преимущество перед волновыми модификациями кроется в способности быстро справляться с электромагнитными помехами. Таким образом, двигатель работает более стабильно, и обороты поддерживает всегда на нужном уровне. Фильтры усиления можно встретить только в устройствах низковольтного типа. Пластины у моделей фиксируются на плоских пружинах. Спусковые механизмы устанавливаются на блоках управления. Непосредственно частотность пользователь способен контролировать с помощью рычага.

Катушки индуктивности в таких устройствах серии ABB устанавливаются на 200 В.. Контакты располагаются по обе стороны от пластины. Сердечники часто устанавливаются закрытого типа. В результате износ их крайне мал. Тепловые реле можно встретить как ступенчатого, так и опорного типа. Выводов в устройствах имеется только два. Использоваться модели данного типа могут лишь в сетях с переменным током. В данном случае параметр выходного напряжения не должен превышать 220 В.. В свою очередь уровень предельного тога максимум может составлять 6 А.

Устройство для пуска "Шнайдер"

Устройство плавного пуска электродвигателя Шнайдер оснащено катушкой на 230 В.. Нагрузки оно максимум способно выдерживать в 6 А.. В данном случае сеть разомкнутых контактов находится возле теплового реле. Сердечник у модели установлен импульсного типа. Параметр полосы пропускания его составляет максимум 6 мп. Устанавливается тепловое реле сразу под пластиной. Выходы у модели имеются с клеммами. Подвижные контакты в системе крепятся на плоских пружинах. Блок управления предусмотрен в устройстве стандартный.

Блокиратор в нем имеется. Спусковой механизм установлен на четыре контакта. Фильтр усиления в пускателе не предусмотрен. Однако для регулировки частотности имеется рычаг. Триггер установлен фазового типа. Крепится он в приборе над нижней пластиной, рядом с подвижными контактами. Подходит устройство для управления синхронными двигателями.

Устройства для морских судов

Модели для морских судов включают в себя сердечники открытого типа. Непосредственно катушки устанавливаются на 300 В.. Перегрузки устройство для плавного пуска электродвигателя максимум должно выдерживать на уровне 6 А.. Параметр полосы пропускания таких модификаций достигает 7 мп. Для подключения моделей применяются специальные выводы. Часто они устанавливаются над сердечником у пластины.

Блоки управления для защиты могут оснащаться блокираторами. Спусковые механизмы по устройству довольно сильно отличаются. Если рассматривать низкочастотные модели, то они часто устанавливаются на четыре проводника. В данном случае клеммы должны находиться возле сердечника. Чувствительность у моделей данного типа не регулируется. Фильтры усиления присутствуют только в пускателях с волновыми триггерами. Подвижные пластины в приборах устанавливаются возле тепловых реле.

Модульные модели для объектов атомной энергетики

Устройства для атомной энергетики оснащаются надежными системами защиты. Всего пластин с контактами у приборов имеется около пяти. Катушки в устройствах устанавливаются самые различные. В некоторых случаях они крепятся на задних панелях. Выходов для подключения у приборов имеется два. Тепловые реле используются часто низкочастотного типа. В данном случае сердечники подходят только импульсные.

Поскольку в последнее время очень широко распространилось применение асинхронного двигателя , в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.