Внешний слой атмосферы земли. Атмосфера земли. Атмосфера защищает от солнечной радиации

Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км.

Атмосфера состоит из воздуха – механической смеси нескольких газов.

Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N 2 O, N 2 O 5 , NO 2 , NH 3 . Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N 2 и NH 3 . Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

Геохимический круговорот азота (

Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О 3 . задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О 2 . В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О: О 2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20- 30 км) возникает озоновый пояс (озоновый экран). Озон (О 3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.

Геохимический круговорот кислорода (В.А. Вронский, Г.В. Войткевич)

Углекислый газ , идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

Углерод (углекислота) – его большая часть в атмосфере находится в виде СО 2 и значительно меньшая в форме СН 4 . Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО 2 в биосфере протекает двумя способами.

Первый способ выражается в поглощении СО 2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО 2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО 2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

Круговорот углерода в географической оболочке (по Ф. Рамаду, 1981)

Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

  1. необратимость их накопления в атмосфере;
  2. тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36 Аr и 38 Аr, в то время как атмосферный аргон состоит полностью из изотопа 40 Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40 К + е → 40 Аr.

Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10 -4 %), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

До высоты 100- 120 км, вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200- 800 км, кислород преобладает над азотом в 10-100 раз.

Земная атмосфера - смесь многих газов. Основную ее часть составляет азот - 77 процентов, старый добрый кислород добавляет еще 21 процент, оставшиеся 2 процента состоят из смеси следов газов - аргона, двуокиси углерода, гелия, неона, криптона, ксенона, закиси азота, угарного газа и других. В атмосфере также содержится водяной пар в различных концентрациях. Наш любимый газ - кислород, так как мы живем благодаря этому газу.

Недоношенных детей, легкие которых недостаточно развиты, иногда помещают в кислородные емкости, в которых ребенок дышит смесью с повышенным содержанием кислорода. Вместо обычного 21 процента концентрация кислорода в такой емкости достигает 30 – 40 процентов. Если у ребенка тяжелые расстройства дыхания, то он дышит чистым кислородом во избежание повреждения клеток головного мозга.

Интересный факт: большой избыток кислорода во вдыхаемой газовой смеси так же опасен, как и его дефицит.

Опасность избытка кислорода и окисление

Избыток кислорода так же опасен, как и его недостаток. Большое количество кислорода в газовой смеси и большая концентрация его в крови могут разрушить клетки тканей глаз ребенка и стать причиной потери зрения. Этот факт подчеркивает двойственную природу кислорода. Чтобы жить, мы должны вдыхать кислород, но и сам кислород - яд для живых организмов. Когда кислород воздуха взаимодействует с другими элементами, такими, как водород и углерод, происходит реакция, называемая окислением. Окисление разрушает органические молекулы, которые составляют основу жизни. При обычной температуре кислород медленно реагирует с другими элементами, и выделяющееся при этом тепло столь незначительно, что мы его не ощущаем.

Материалы по теме:

Загрязнение воздуха

Температура и окисление

Однако реакции окисления стремительно ускоряются при повышении температуры. Чиркните спичкой о коробок. Трение между спичечной головкой и абразивной полоской на коробке нагревает головку спички. Реакция окисления в этом случае протекает быстро, и спичка стремительно вспыхивает пламенем. Вы видите свет и ощущаете тепло, выделившееся в ходе реакции окисления. В наших организмах окисление протекает не столь драматично. Красные кровяные клетки поглощают кислород из воздуха в легких и разносят его по всему организму. Кислород в живых клетках в строго контролируемых условиях намного медленнее и не так жарко, как в случае сгоревшей спички, окисляет пищу, которую мы едим. При таком окислении пища расщепляется, в результате освобождается энергия, и образуются вода и углекислый газ. Углекислый газ с кровью приносится в легкие и из них улетучивается в атмосферу с выдыхаемым воздухом.

Воздух – смесь газов, необходимых для существования и поддержания жизни на планете. Каковы его особенности, и какие вещества входят в состав воздуха?

Воздух необходим для дыхания всем живым организмам. Он состоит из азота, кислорода, аргона, углекислого газа и ряда примесей. Состав атмосферного воздуха может меняться в зависимости от условий и местности. Так в городской среде уровень углекислого газа в воздухе по сравнению с лесной полосой повышается из-за обилия транспортных средств. В высокогорье концентрация кислорода снижается, так как молекулы азота легче, чем молекулы кислорода. Поэтому концентрация кислорода уменьшается быстрее.

Шотландский физик и химик Джозеф Блэк в 1754 году опытным путем доказал, что воздух – это не просто вещество, а именно газовая смесь

Рис. 1. Джозеф Блэк.

Если говорить о составе воздуха в процентах, то основным его компонентом является азот. Азот занимает 78% от всего объема воздуха. Процентное соотношение кислорода в молекуле воздухе составляет 20,9%. Азот и кислород – 2 основные элемента воздуха. Содержание остальных веществ значительно меньше и не превышает 1%. Так, аргон занимает объем 0,9%, а углекислый газ – 0,03%. Также воздух имеет такие примеси, как неон, криптон, метан, гелий, водород и ксенон.

Рис. 2. Состав воздуха.

В производственных помещениях большое значение предают аэроионному составу воздуха. Имеющиеся в воздухе отрицательно заряженные ионы благоприятно влияют на организм человека, заряжают его энергией, повышают настроение.

Азот

Азот – главная составляющая воздуха. Перевод названия элемента – «безжизненный» – может относится к азоту как простому веществу, но азот в связанном состоянии является одним из главных элементов жизни, входит в состав белков, нуклеиновых кислот, витаминов и т. д.

Азот – элемент второго периода, не имеет возбужденных состояний, так как атом не имеет свободных орбиталей. Однако азот способен проявлять в основном состоянии валентность не только III, но и IV за счет образования ковалентной связи по донорно-акцепторному механизму с участием неподеленной электронной пары азота. Степень окисления, которую может проявлять азот, изменяется в широких пределах: от -3 до +5.

В природе азот встречается в виде простого вещества – газа N2 и в связанном состоянии. В молекуле азота атомы связаны прочной тройной связью (энергия связи 940 кДж/моль). При обычной температуре азот может взаимодействовать только с литием. После предварительной активизации молекул путем нагревания, облучения или действием катализаторов азот вступает в реакции с металлами и неметаллами.

Кислород

Кислород – самый распространенный элемент на Земле: массовая доля в земной коре 47,3%, а объемная доля в атмосфере – 20,95%, массовая доля в живых организмах – около 65%.

Практически во всех соединениях (кроме соединений с фтором и пероксидов) кислород проявляет постоянную валентность II и степень окисления – 2. Атом кислорода не имеет возбужденных состояний, так как на втором внешнем уровне нет свободных орбиталей. В качестве простого вещества кислород существует в виде двух аллотропных видоизменений – газов кислорода О2 и озона О3. Самое важное соединение кислорода – это вода. Около 71% земной поверхности занимает водная оболочка, без воды невозможна жизнь.

Озон в природе образуется из кислорода воздуха во время грозовых разрядов, а в лаборатории – пропусканием электрического разряда через кислород.

Рис. 3. Озон.

Озон – еще более сильный окислитель, чем кислород. В частности? он окисляет золото и платину

Кислород в промышленности обычно получают сжижением воздуха с последующим отделением азота за счет его испарения (имеется разница в температурах кипения: – -183 градуса для жидкого кислорода и -196 градусов для жидкого азота.)

Что мы узнали?

Воздух – необходимый элемент для каждого живого существа, значение которого трудно переоценить. Большую часть которого составляет азот и кислород. В химический состав воздуха также входит углекислый газ, аргон, неон, криптон, водород, гелий. В данной статье по химии (8 класс) кратко рассказывается о воздухе в целом, и об его основных элементах.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 98.

Роль атмосферы в жизни Земли

Атмосфера является источником кислорода, которым дышат люди. Однако при подъеме на высоту общее атмосферное давление падает, что приводит к снижению парциального кислородного давления.

Лёгкие человека содержат приблизительно три литра альвеолярного воздуха. Если атмосферное давление в норме, то парциальное кислородное давление в альвеолярном воздухе будет составлять 11 мм рт. ст., давление углекислых газов - 40 мм рт. ст., а водяных паров - 47 мм рт. ст. При увеличении высоты кислородное давление понижается, а давление паров воды и углекислоты в лёгких в сумме будет оставаться постоянным - приблизительно 87 мм рт. ст. Когда давление воздуха сравняется с этой величиной, кислород прекратит поступать в лёгкие.

В связи со снижением атмосферного давления на высоте 20 км, здесь будет кипеть вода и межтканевая жидкость организма в человеческом теле. Если не использовать герметическую кабину, на такой высоте человек погибнет практически мгновенно. Поэтому с точки зрения физиологических особенностей человеческого организма, «космос» берёт начало с высоты 20 км над уровнем моря.

Роль атмосферы в жизни Земли очень велика. Так, например, благодаря плотным воздушным слоям - тропосфере и стратосфере, люди защищены от радиационного воздействия. В космосе, в разреженном воздухе, на высоте свыше 36 км, действует ионизирующая радиация. На высоте свыше 40 км - ультрафиолетовая.

При подъёме над поверхностью Земли на высоту свыше 90-100 км будет наблюдаться постепенное ослабление, а затем и полное исчезновение привычных для человека явлений, наблюдаемых в нижнем атмосферном слое:

Не распространяется звук.

Отсутствует аэродинамическая сила и сопротивление.

Тепло не передаётся конвекцией и т. д.

Атмосферный слой защищает Землю и все живые организмы от космической радиации, от метеоритов, отвечает за регулирование сезонных температурных колебаний, уравновешивание и выравнивание суточных. При отсутствии атмосферы на Земле суточная температура колебалась бы в пределах +/-200С˚. Атмосферный слой - это животворный «буфер» между земной поверхностью и космосом, носитель влаги и тепла, в атмосфере происходят процессы фотосинтеза и обмена энергии - важнейших биосферных процессов.

Слои атмосферы по порядку от поверхности Земли

Атмосфера - это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

Тропосфера.

Стратосфера.

Мезосфера.

Термосфера.

Экзосфера

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время - это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы - падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами - 9 км, над экватором - около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.

Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное - светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы - приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

Ионосферы.

Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км - более, чем из 100 млн.

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц - электронов и протонов.

Газовая оболочка, окружающая нашу планету Земля, известная как атмосфера, состоит из пяти основных слоев. Эти слои берут начало на поверхности планеты, от уровня моря (иногда ниже) и поднимаются до космического пространства в следующей последовательности:

  • Тропосфера;
  • Стратосфера;
  • Мезосфера;
  • Термосфера;
  • Экзосфера.

Схема основных слоев атмосферы Земли

В промежутке между каждым из этих основных пяти слоев находятся переходные зоны, называемые «паузами», где происходят изменения температуры, состава и плотности воздуха. Вместе с паузами, атмосфера Земли в общей сложности включает 9 слоев.

Тропосфера: где происходит погода

Из всех слоев атмосферы тропосфера является тем, с которым мы больше всего знакомы (осознаете ли вы это или нет), так как мы живем на ее дне - поверхности планеты. Она окутывает поверхность Земли и простирается вверх на несколько километров. Слово тропосфера означает «изменение шара». Очень подходящее название, так как этот слой, где происходит наша повседневная погода.

Начиная с поверхности планеты, тропосфера поднимается на высоту от 6 до 20 км. Нижняя треть слоя, ближайшая к нам, содержит 50% всех атмосферных газов. Это единственная часть всего состава атмосферы, которая дышит. Благодаря тому, что воздух нагревается снизу земной поверхностью, поглощающей тепловую энергию Солнца, с увеличением высоты температура и давление тропосферы понижаются.

На вершине находится тонкий слой, называемый тропопаузой, который является всего лишь буфером между тропосферой и стратосферой.

Стратосфера: дом озона

Стратосфера - следующий слой атмосферы. Он простирается от 6-20 км до 50 км над земной поверхностью Земли. Это слой, в котором летают большинство коммерческих авиалайнеров и путешествуют воздушные шары.

Здесь воздух не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. По мере того, как вы поднимаетесь, температура увеличивается, благодаря обилию природного озона (O 3) - побочного продукта солнечной радиации и кислорода, который обладает способностью поглощать вредные ультрафиолетовые лучи солнца (любое повышение температуры с высотой в метеорологии, известно как "инверсия").

Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы бушующую в тропосфере бурю, поскольку слой действует как «колпачок» для конвекции, через который не проникают штормовые облака.

После стратосферы снова следует буферный слой, на этот раз называемый стратопаузой.

Мезосфера: средняя атмосфера

Мезосфера находится примерно на расстоянии 50-80 км от поверхности Земли. Верхняя область мезосферы является самым холодным естественным местом на Земле, где температура может опускаться ниже -143° C.

Термосфера: верхняя атмосфера

После мезосферы и мезопаузы следует термосфера, расположенная между 80 и 700 км над поверхностью планеты, и содержит менее 0,01% всего воздуха в атмосферной оболочке. Температуры здесь достигают до +2000° C, но из-за сильной разреженности воздуха и нехватки молекул газа для переноса тепла, эти высокие температуры воспринимаются, как очень холодные.

Экзосфера: граница атмосферы и космоса

На высоте около 700-10000 км над земной поверхностью находится экзосфера - внешний край атмосферы, граничащий с космосом. Здесь метеорологические спутники вращаются вокруг Земли.

Как насчет ионосферы?

Ионосфера не является отдельным слоем, а на самом деле этот термин используется для обозначения атмосферы на высоте от 60 до 1000 км. Она включает в себя самые верхние части мезосферы, всю термосферу и часть экзосферы. Ионосфера получила свое название, потому что в этой части атмосферы излучение Солнца ионизируется, когда проходит магнитные поля Земли на и . Это явления наблюдается с земли как северное сияние.