«Нанотехнологии в современном мире. Нанотехнологии и области их применения. Справка Нанотехнологии самое интересное коротко

МКУ «Отдел образования администрации муниципального района Миякинский район Республики Башкортостан»

Конкурс исследовательских работ в рамках Малой академии наук школьников Республики Башкортостан»

Тема: «Нанотехнологии – символ будущего»

Номинация: « Физика, Наука и техника»

Выполнил :

Латыпов Алмаз Забирович

ученик 8 класса

Руководитель :

Миргалиева Алия Олеговна

учитель математики и физики

МОБУ СОШ с.Анясево

Введение…………………………………………………………………..

1. Что такое нанотехнологии………….………………………………...

2. Нанотехнологии в быту……………………………………………….

3. Неньютоновская жидкость…………………………………………

Заключение………………………………………………………………..

Список литературы…………………………….........................................

Введение

В последнее время можно часто слышать слово «нанотехнологии». Если спросить любого учёного, что это такое, и для чего нужны нанотехнологии, ответ будет краток: «Нанотехнологии изменяют привычные свойства вещества. Они преображают мир и делают его лучше».

Учёные утверждают, что нанотехнологии найдут применение в очень многих областях деятельности: в промышленности, в энергетике, в исследованиях космоса, в медицине и во многом другом. Например, крохотные нанороботы, способные проникнуть в любую клетку человеческого организма, смогут быстро лечить те или иные болезни и производить такие операции, которые не под силу даже самому опытному хирургу.

Благодаря нанотехнологиям появятся «умные дома». В них человеку практически не надо будет заниматься скучными бытовыми хлопотами. На себя эти обязанности возьмут «умные вещи» и «умная пыль». Люда станут носить одежду, которая не пачкается, более того, сообщает хозяину, что, например, пора обедать или принять душ.

Нанотехнологии позволят изобрести компьютерную технику и мобильные телефоны, которые можно будет складывать, как носовой платок, и носить в кармане.

Словом, учёные-нанотехнологи действительно намерены существенно преобразить жизнь человека.

Таким образом я сформулировал исследовательскую тему

«Нанотехнологии - символ будущего». Меня заинтересовала эта тема, потому что в будущем нам жить и работать с нанотехнологиями, а на сегодняшний день нам очень мало, что известно об этом. Я считаю, что сегодня – это самая актуальная проблема, потому что она направлена на наше с вами будущее. И я решил начать изучать и исследовать технологии будущего уже сегодня.

Актуальность работы : изучение физики началось с 7 класса. Мне этот предмет стал настолько интересным, что я решил глубже изучать его. Если я, изучив свойства неньютоновской жидкости, смогу рассказать о них своим одноклассникам, то это не только повысит их интерес к предмету, но и возможно, приведёт к желанию самостоятельно изучать другие темы, а так же проводить посильные эксперименты.

Цель:

1. Разобраться в сущности понятия «нанотехнология», раскрыть суть нанонауки.

2. Понять, как человек реализует огромный потенциал нанонауки в повседневной жизни, её перспективы и будущее.

3. Изучить, что представляет неньютоновская жидкость и какими необычными свойствами обладает.

Задачи исследования:

  • Выяснить значение термина «нанотехнология».
  • Найти примеры применения нанотехнологий в быту.
  • Узнать о необычных свойствах жидкостей.
  • Доказать, что в домашних условиях можно сделать неньютоновскую жидкость.
  • Провести эксперименты, демонстрирующие необычные свойства неньютоновской жидкости.
  • Предположить, где можно использовать свойства таких жидкостей.
  • Рассказать сверстникам о неньютоновской жидкости и её свойствах.
Гипотеза: Изучая нанотехнологии, мы все больше расширяем область их применений – от медицины до космических исследований.

Объект исследования: неньютоновская жидкость

Предмет исследования: свойства неньютоновской жидкости.

Методы исследования: сбор материала по теме, его анализ и обработка, оформление работы, создание презентации.

Выход проектного продукта: презентация

Что такое нанотехнологии

Что же такое нанотехнологии? И как именно они позволяют менять свойства вещей?

Слово «нанотехнологии» состоит из двух слов - «нано» и «технологии».

«Нано» - греческое слово, означающее одну миллиардную часть чего-нибудь, например, метра. Размер одного атома немного меньше нанометра. А нанометр настолько меньше метра, насколько обыкновенная горошина меньше земного шара. Если бы рост человека был один нанометр, то толщина листа бумаги показалась бы человеку равной расстоянию от Москвы до города Тулы, а это целых 170 километров!

Слово «технологии» означает создание из доступных материалов того, что необходимо человеку.

А нанотехнологии - это создание того, что нужно человеку, из атомов и групп атомов (они называются наночастицами) при помощи специальных приборов.

Существует два способа получения наночастиц.

Первый, более простой, метод - «сверху вниз». Исходный материал измельчают разнообразными способами до тех пор, пока частица не станет наноразмерной.

Второй - получение наночастиц путём объединения отдельных атомов, «снизу вверх». Это более сложный способ, но именно за ним учёные видят будущее нанотехнодогий. Получение наночастиц этим способом напоминает работу с конструктором. Только в качестве деталей используются атомы и молекулы, из которых учёные создают новые наноматериалы и наноустройства.

Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.

В настоящее время нанотехнология является одним из приоритетных направлений развития Российской науки.

Нанотехнологии в быту

В настоящее время нанотехнологии находят применение в разных сферах жизнедеятельности человека. Перечислить все области, в которых эта глобальная технология применяется, практически невозможно. Можно назвать только некоторые из них.

Как оказалось, нанотехнологии часто встречаются в быту, они повсюду, просто мы об этом не знаем.

Все мы используем мыло, без которого уже не представляем личную гигиену. Никто даже не догадывается, что мыло – продукт нанотехнологии, но один из самых простых. Мыло содержит мицеллы, небольшие наночастицы, которые используются и для производства других популярных косметологических средств. Любителям солнца и шоколадного загара также помогают нанотехнологии. Солнцезащитные крема и лосьоны создаются с добавлением частиц, которые насыщают кожу витаминами и защищают ее от вредного воздействия.

Нанотехнологии немаловажную роль сыграли и в развитии моды. С применением новейших технологий производятся лыжные куртки. Они очень хорошо сохраняют тепло, не пропускают ветра и не мокнут. Также наночастицы используют при создании иной спортивной одежды, которая не мнется, устойчива к загрязнениям и ненастьям.

В теннисе нанотехнологии сыграли важную и одну из главных ролей. Наночастицы содержаться в теннисных ракетках и мячиках. Благодаря им, они стали гораздо легче, мячи более прыгучими и быстрыми. Нанотехнологии стали популярными при разработке и выпуске сантехники. Наночастицы позволяют создавать особое покрытие, которое долго сохраняет свой товарный блестящий вид и очень легко чистится.

Мы даже не подозреваем, что нанотехнологии помогают нам в повседневной жизни при работе с компьютерами и интернетом. Наночастицы используются для увеличения параметров памяти жестких дисков. Благодаря разработкам, появились ноутбуки, нетбуки, айфоны, смартфоны и многие другие современные гаджеты. Нашим автомобилям также значительно помогло развитие наночастиц. Ими производители покрывают поверхности детали и они служат гораздо дольше. Также в некоторых автомобилях устанавливаются

Кусочек лейкопластыря, которым мы заклеиваем порез на ручке, имеет нанослой серебра, помогающий быстрее залечивать рану. Это потому, что серебро имеет антибактериальные свойства, которые действуют лучше с повышением площади поверхности, что обеспечивается наночастицами.

Значение нанотехнологий в жизни каждого человека огромно. Чем комфортнее становится жизнь, тем больше ученые смогли узнать об этих очень малых частицах.

Неньютоновская жидкость

Ньютоновская жидкость – это вода, масло и большая часть привычных нам в ежедневном использовании текучих веществ, то есть таких, которые сохраняют свое агрегатное состояние, что бы вы с ними не делали.

Неньютоновскими называют жидкости, течение которых не подчиняется закону Ньютона.

Еще в конце XVII века великий физик Ньютон обратил внимание, что грести веслами быстро гораздо тяжелее нежели, если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее.

Простейшим наглядным бытовым примером может являться смесь крахмала с небольшим количеством воды. Чем быстрее происходит внешнее воздействие на взвешенные в жидкости макромолекулы связующего вещества, тем выше её вязкость.

Таких, аномальных с точки зрения гидравлики, жидкостей немало. Они широко распространены в нефтяной, химической, перерабатывающей, военной и других отраслях промышленности. К неньютоновским жидкостям можно отнести буровые растворы, сточные грязи, масляные краски, зубную пасту, кровь, жидкое мыло и др.

Свойства неньютоновской жидкости широко применяются в военной промышленности при изготовлении молекулярных бронежилетов, умного пластилина «хандгам», а также снаряжение для зимних видов спорта, чехлы для iPhone.

Приготовление раствора.

Для приготовления нам нужны крахмал (картофельный, кукурузный - любой) и вода. Пропорция зависит от качества крахмала и обычно составляет от 1:1 до 1:3 в пользу воды. В результате смешивания мы получаем нечто типа киселя, обладающего интересными свойствами. (Приложение 1)

Исследование неньютоновской жидкости.

    Изменение скорости течения жидкости.

Опыт №1. Так, если в ёмкость со смесью медленно ввести руку, то результат точно такой же, как если бы мы ввели руку в воду. Но если размахнуться как следует и стукнуть по этой смеси, то рука отскочит, как если бы это было твёрдое вещество.

Опыт №2. Если лить такую смесь с достаточной высоты, то в верхней части струи она будет течь, как жидкость. А в нижней - скапливаться комками, как твёрдое вещество.

Опыт №3. Кроме того, можно засунуть руку в жидкость и резко сжать пальцы. Можно почувствовать, как между пальцами образовалась твёрдая прослойка.

Опыт №4. Или ещё один эксперимент - сунуть руку в этот "кисель" и резко попытаться её вытянуть. Большая вероятность, что ёмкость поднимется вслед за рукой.

Опыт №5. Когда быстро воздействовать на жидкость, катать как бы шарик из воды, то он получится на самом деле, благодаря неньютоновской жидкости. (см. приложение 1)

По результатам этих опытов можно сделать следующий вывод, если на них воздействовать резко, сильно, быстро - они проявляют свойства, близкие к свойствам твердых тел, а при медленном воздействии становится жидкостью.

Основываясь на свойствах неньютоновской жидкости, я хочу предложить несколько способов ее использования.

1. Изготовление контейнеров для транспортировки и хранения легко бьющихся стеклянных предметов (стекло, посуда, елочные игрушки и др.)

2. Использование неньютоновской жидкости при изготовлении защитных средств (наколенники, налокотники, шлемы и др.) для спортсменов, а так же их применении при обучении маленьких детей ходьбе.

У неньютоновской жидкости есть существенный недостаток: жидкость утрачивает свои свойства, когда из нее испаряется вода. Мною было проведено исследование, в результате которого я выяснил, что свойства сохраняются 2-5 дней в зависимости от температуры окружающей среды.

Температура окружающей среды

Количество дней, в течение которых свойства сохраняются

Вывод: чем ниже температура окружающей среды, тем медленнее испаряется вода и тем дольше сохраняются свойства неньютоновской жидкости.

Заключение 1. Нанотехнологии - символ будущего, важнейшая отрасль, без которой немыслимо дальнейшее развитие цивилизации. 2. Использование продуктов нанотехнологии в быту, улучшает качество жизни человека. 3. В нанотехнологиях наше будущее. Всем странам следует развивать эту отрасль науки. 4. Изучение нанотехнологии принесет нам еще много научных побед в будущем.

5. По результатам экспериментов можно сделать следующие выводы:

Если мешаем быстро неньютоновскую жидкость, чувствуется сопротивление, а если медленнее то нет. При быстром движении такая жидкость ведёт себя как твердое тело;

Чем ниже температура окружающей среды, тем медленнее испаряется вода и тем дольше сохраняются свойства неньютоновской жидкости.

Список использованной литературы

    http :// popular . rusnano . com

    http :// www . rusnano . com

    http :// www . en . wikipedia . org

    http :// nanoru . ru

    http :// www . nanometer . ru

    http :// www . nanotech . ru

    http://www.rusnanonet.ru/nns/67171/info/

    http://izvmor.ru/

    http://cnnrm.ru/

Приложение 1

Приготовление раствора.

Приложение 2



Создано 06.12.2012 10:45

Зубная паста


Почистьте свои белоснежные зубы определенной пастой, и наночастицы минералов на основе гидроксиапатитов кальция заполнят микротрещины в эмали и сохранят зубы от кариозных полостей.



Оксид алюминия – активный ингредиент в солнцезащитных средствах, поглощающих ультрафиолетовые лучи – распадается при смешивании с другими молекулами, такими как пот на коже. Поместите эти активные ингредиенты в наноэмульсию, и они останутся отделенными от окружающей среды и смогут выполнять свою поглощающую функцию.

Каноловое масло


Многие белки и витамины не растворяются в воде, а потому их сложно добавлять в еду. Но если разбить их на нанокапли, проблема будет решена. Каноловое масло содержит нанокапли фитостеролов, которые позволяют держать на низком уровне содержание холестерина, а потому можно есть жареных цыплят круглые сутки и при этом не страдать от последствий накопления холестерина в организме.

Презервативы


Да, нанотехнологии попали и в , на этот раз в форме нанопены в презервативах. Наночастицы серебра в пене разрушают бактерии и препятствуют в распространении инфекций, передаваемых половым путем.

Довольно сложно представить будущее без нанотехнологий. Манипуляции материей на атомном и субмолекулярном уровнях проложили путь для крупных прорывов в химии, биологии и медицине. Тем не менее уже сейчас применение нанотехнологий иногда превосходит даже самые любопытные наши фантазии и реалии.

Фильмы

Без изобретения сканирующего туннельного микроскопа (STM) в 1980-х годах, область нанотехнологий могла остаться научной фантастикой. С атомарной точностью STM физики смогли изучать структуру таким образом, каким не удавалось с обычными оптическими микроскопами.

Удивительный потенциал STM был продемонстрирован учеными IBM, когда они создали «Мальчик и его атом», самый маленький в мире анимационный фильм. Он был создан путем перемещения отдельных атомов на поверхности меди.

90-секундный фильм изображает мальчика из молекул окиси углерода, играющего с мячом, танцующего и прыгающего на батуте. Созданная из 202 кадров анимация разворачивается на площади, равной 1/1000 размера одного человеческого волоса. Чтобы сделать фильм, ученые использовали уникальную особенность STM: электрически заряженный и очень острый стилус с одним атомом в роли наконечника. Стилус может определять точное положение молекул углерода на поверхности анимации (в данном случае - на листе меди). Также его можно использовать для создания изображений молекул и перемещения их на новые позиции.

Нефтедобыча

Глобальные расходы на разведку месторождений нефти выросли в геометрической прогрессии за последние десять лет. Тем не менее эффективность добычи нефти остается серьезной проблемой. Когда нефтяные компании закрывают скважины, из них извлекается менее половины нефти. Остальная остается в ловушке в скале, потому что ее будет слишком дорого добывать. К счастью, благодаря нанотехнологиям ученые Китая нашли способ обойти это.

Решение было в улучшении существующего метода бурения. Оригинальная методика предполагает введение воды в поры породы, в которой находится нефть. Это вытесняет нефть и выводит ее наружу. Тем не менее у этого метода есть свои ограничения. В определенный момент вместо нефти начинает выходить вода.

Чтобы предотвратить это, китайские исследователи Пэн и Мин Юань Ли пришли к идее вливать воду с наночастицами, которые будут закрывать переходы между порами породы. Вода будет выбирать самые узкие пути в порах, содержащих нефть, и выталкивать ее наружу. Успешно показав себя в испытаниях в Китае, этот метод повысил эффективность нефтедобычи, доставая до 50% нефти, которая в ином случае была вне досягаемости.

Дисплеи с высоким разрешением

Изображения на экранах компьютеров представлены с помощью крошечных точек - пикселей. Независимо от их размеров и форм, количество пикселей на экране остается определяющим фактором качества изображения. Однако, в случае с обычными , большее число пикселей означает большие и громоздкие экраны - что не совсем удобно.

Пока компании заняты продажей гигантских экранов потребителям, ученые из Оксфордского университета обнаружили способ создания пикселей в несколько сотен нанометров в поперечнике. Этого можно достичь, используя свойства материала, изменяющего фазу, под названием GST. В эксперименте ученые использовали набор семинанометровых слоев GST, зажатых между прозрачными электродами. Каждый слой - всего 300 на 300 нанометров - выступает как пиксель, который можно включать и выключать электрическим путем. Пропуская электрический ток через слой, ученые смогли получить картинку с высоким качеством и контрастностью.

Нанопиксели будут служить для различных целей, когда традиционные пиксели станут непрактичными. К примеру, их крошечные размеры и толщина сделают их отличным выбором для таких технологий, как умные очки, складные экраны и искусственная сетчатка. Еще одним преимуществом нанопиксельных дисплеев является их низкое энергопотребление. В отличие от существующих дисплеев, которые постоянно обновляют все пиксели для формирования изображений, слой на основе GST обновляет только часть дисплея, что на деле экономит энергию.

Краска, меняющая цвет

Во время экспериментов с нитями наночастиц золота ученые из Калифорнийского университета наткнулись на удивительную вещь. Они заметили, что цвет золота меняется, когда нить растягивается или сжимается, переходя из ярко-синего в фиолетовый и затем в красный. Эксперимент вдохновил ученых на создание датчиков из наночастиц золота, которые меняют цвет, когда на них оказывается давление.

Для производства таких датчиков наночастицы золота добавлялись к гибкой полимерной пленке. Когда пленка подвергается давлению, она растягивается и вызывает изменение цвета частиц. Легкое нажатие превращает датчик в фиолетовый, а сильное - в красный. Ученые заметили это интересное свойство не только у частиц золота, но и у частиц серебра, которые меняют свой цвет на желтый при растяжении.

Такие датчики могут служить для разных целей. К примеру, их можно включать в мебель, диваны или кровати, чтобы определить, сидит человек или спит. Несмотря на то, что датчик сделан из золота, его малый размер помогает преодолеть проблему стоимости.

Зарядка телефонов

Будь то iPhone, Samsung или другой телефон, каждый смартфон, покидающий производственную линию, обладает двумя серьезными недостатками: время жизни батареи и время ее зарядки. И хотя первая проблема остается насущной, ученые из города Рамат-Ган в Израиле смогли решить вторую проблему, создав аккумулятор, который заряжается за 30 секунд.

Этот прорыв был тесно связан с проектом по изучению болезни Альцейгмера силами ученых из Университета Тель-Авива. Ученые обнаружили, что молекулы пептида, которые сокращают нейроны мозга и вызывают заболевание, обладают высокой емкостью (способностью сохранять электрический заряд). Это открытие было взято на заметку StoreDot, компании, которая пытается превратить нанотехнологии в целевые потребительские продукты. При помощи ученых, StoreDot разработала NanoDots - технологию, которая использует способность пептидов для улучшения времени жизни батареи смартфонов. Компания продемонстрировала свою технологию на мероприятии ThinkNext от Microsoft. На примере телефона Samsung Galaxy S3 батарея была заряжена с нуля до максимума меньше чем за минуту.

Хитроумная доставка лекарств

Лечение заболеваний вроде рака может быть слишком дорогим, а в некоторых случаях - запоздалым. К счастью, несколько медицинских компаний по всему миру исследуют дешевые и эффективные способы лечения подобных болезней. Среди них и Immusoft, компания, которая планирует осуществить революцию в сфере доставки лекарств в наши тела.

Вместо того, чтобы тратить миллиарды долларов на лекарства и терапевтические программы, Immusoft считает, что наши тела сами могут вырабатывать нужные лекарства. При помощи иммунной системы, клетки пациента могут быть изменены и снабжены новой генетической информацией, которая позволит им вырабатывать собственные лекарства. Генетическую информацию можно доставить с помощью капсул наноразмера, вводимых в организм.

Новый метод пока не прошел испытание на людях. Тем не менее Immusoft и другие учреждения сообщили об успешных экспериментах, проведенных на мышах. Если метод докажет свою эффективность на людях, он значительно сократит время лечения и затраты на терапию сердечно-сосудистых заболеваний и других болезней.

Молекулярная коммуникация

При определенных условиях электромагнитные волны, душа глобальной связи, становятся непригодными для использования. Подумайте об электромагнитном импульсе, который может вывести из строя спутник связи, и тогда любая форма технологии, которая зависит от него, окажется бесполезной. Мы хорошо знакомы с таким сценарием из апокалиптических фильмов. Также этот вопрос на протяжении многих лет изучали ученые из Университета Уорвика в Соединенном Королевстве и в Йоркском университете Канады, прежде чем прийти к неожиданному решению вопроса.

Ученые наблюдали за тем, как некоторые виды животных, в частности насекомых, используют феромоны для общения на больших расстояниях. Собрав данные, ученые разработали коммуникационный метод, в котором сообщения кодируются в молекулах испаряющегося спирта. Они успешно продемонстрировали новый метод, используя спирт в качестве химических сигналов, и отправили первое сообщение, которое расшифровывалось как «О, Канада».

Метод включал использование двух устройств, передатчика и приемника, которые кодировали и посылали и получали сигнал соответственно. Можно набрать текстовое сообщение на передатчике, используя Arduino One (микроконтроллер с открытым исходным кодом). Затем контроллер преобразует текст в двоичный код, который считывается электронным распылителем со спиртом. После считывания кода распылитель заменяет «1» на впрыск, а «0» оставляет как пробел. В воздухе спирт улавливается приемником в воздухе, который содержит химический сенсор и микроконтроллер. Затем данные снова переводятся в текст.

Сообщение удалось отправить на несколько метров по открытому пространству. Такой метод может быть полезен в средах типа подземных туннелей или трубопроводов, где электромагнитные волны становятся бесполезными.

Накопитель данных

За последние несколько десятилетий компьютеры пережили экспоненциальный рост в вычислительной мощности и емкости хранения. Это явление было точно предсказано Джеймсом Муром более 50 лет назад и позже стало известно как закон Мура. Тем не менее многие ученые - включая физика Мичио Каку - считают, что закон Мура однажды прекратит работать. Это связано с тем, что вычислительная мощь компьютеров не может идти в ногу по экспоненте с существующими производственными технологиями.

Хотя Каку акцентировал внимание на вычислительной мощности, то же самое в равной мере относится к емкости. К счастью, это не конец. Команда ученых из Университета RMIT в Мельбурне в данный момент ищет альтернативы. Под руководством Шарата Шрирама, команда ученых находится на пороге создания устройств хранения данных, которые имитируют метод хранения информации человеческим мозгом. Первый шаг ученых заключался в создании нанопленки, которая химически запрограммирована на хранение электрических зарядов в состоянии «включен» и «выключен». Пленка, которая тоньше человеческого волоса в 10 000 раз, может стать краеугольным камнем для разработки устройств памяти, которые имитируют работу нейронных сетей мозга.

Наноискусство

Перспективное развитие нанотехнологий восхищает научное сообщество. Тем не менее достижения в области нанотехнологий не ограничиваются медициной, биологией и техникой. Наноискусство - развивающаяся область, которая позволяет нам увидеть крошечный мир под микроскопом с совершенно новой точки зрения.

Как следует из названия, наноискусство - это сочетание искусства и нанонауки, в котором практикуется небольшое число ученых и художников. Среди них Джон Харт, инженер-механик из Мичиганского университета, создавший нанопортрет президента. Портрет под названием «Нанобама» был создан для президента, когда он выступал кандидатом в ходе президентских выборов 2008 года. Каждая грань портрета составляет менее половины миллиметра, а весь портрет сделан из 150 нанотрубок. Остается только вопрос времени, когда такой портрет можно будет распечатать.

Новые рекорды

Человечество всегда стремилось создавать вещи сильнее, быстрее и больше. Но когда речь заходит о самых маленьких вещах, в игру вступают нанотехнологии. Среди самых маленьких вещей, созданных с использованием нанотехнологий, есть книга под названием Teeny Ted From Turnip, которая в настоящее время считается самой маленький в мире напечатанной книгой. По размерам книга всего 70 на 100 микрометров и наполнена буквами, вырезанными на 30 страницах из кристаллического кремния. Правда, стоит такая книжка немало - более 15 000 долларов. К тому же для ее прочтения понадобится электронный микроскоп, тоже удовольствие не из дешевых.

По материалам listverse.com


Нет похожих постов

Введение 3

1. Возникновение и развитие нанонауки 4

2. Природные нанообъекты и наноэффекты 6

3. Фундаментальные положения 9

3.1 Сканирующая зондовая микроскопия -

3.2 Сканирующая туннельная микроскопия -

4. Наноматериалы 11

4.1 Фуллерены -

4.2 Фуллериты -

4.3 Углеродные нанотрубки -

4.4 Сверхпрочные материалы 12

4.5 Высокопроводящие материалы -

4.6 Нанокластеры -

4.7 Графен 13

5. Прикладная нанотехнология 14

5.1 Инкрементная нанотехнология -

5.2 Эволюционная нанотехнология 17

5.3 Радикальная нанотехнология -

6. Перспективы развития нанонауки 18

7. Критика нанотехнологий 19

Заключение 20

Список литературы 21

Введение

Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений.

Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

1. Возникновение и развитие нанонауки

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор:

«Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой - от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определенном этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоемкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров. Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует еще и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов».

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

2. Природные нанообъекты и наноэффекты

Как великий художник природа умеет

и с небольшими средствами

достигать великих эффектов.
(Г.Гейне, немецкий поэт, публицист, критик)

Окружающий нас мир наполнен разнообразными биологическими нанообъектами и наноэффектами, о нанометрической сущности которых мы порой даже и не задумываемся. Например, если размеры бактерий исчисляются микрометрами, то большинство вирусов имеют размеры от 10 до 200 нм. Так, вирус гриппа H3 N2, вызвавший в 1957 году эпидемию, в результате которой умерли от 1 до 4 млн человек, представляет собой сферу диаметром от 80 до 120 нм.

Вирусы - это уникальное природное произведение нанобиотехнологий. Сердцевина вируса содержит одну отрицательную цепь рибонуклеопротеинов (РНП), состоящую из восьми частей, которые кодируют десять вирусных белков. Фрагменты РНП имеют общую белковую оболочку, объединяющую их и образующую нуклеопротеид. На поверхности вируса находятся выступы (гликопротеины) - гемагглютинин (названный так из-за способности агглютинировать эритроциты) и нейраминидаза (фермент). Гемагглютинин обеспечивает способность вируса присоединяться к клетке.

Размеры аминокислот составляют около 1 нм, а сами белки занимают размерную нишу в диапазоне 4-50 нм.

Объект

Вещество

Размер, нм

Аминокислота

Глицин (наименьшая из аминокислот)

Триптофан (наибольшая из аминокислот)

Нуклеотид

Цитозин (наименьшая из аминокислот, входящих в ДНК)

Гуанин фосфат (наибольшая из аминокислот, входящих в ДНК)

Аденозин трифосфат (АТФ, энергетический источник клетки)

Молекула

Хлорофилл растений

Инсулин человека (полипептидный гормон)

Эластин (строительный материал клеток)

Гемоглобин (переносчик кислорода)

7,0мира и РБ………………………………21-30 4. Практическое применение нанотехнологий ………………………………………...31-55 4.1 Нанотехнологии ... направлений развития современного материаловедения являются наноматериалы и нанотехнологии . К нанотехнологиям можно...

  • Современные тенденции и новые направления в науке о полимерах

    Реферат >> Химия

    Без использования нанотехнологий . Наночастицы, использованные в составе световоспринимающей пленки, помогли создать современный прототип... , в современном мире все больший вес набирают именно инновационные науки, в частности нанотехнологии . Во всем мире ...

  • Современная инновационная политика России

    Реферат >> Политология

    Данной работе рассматривается тема "Современная инновационная политика России". Государственное... области электроники и космоса. Однако в современном мире скорость, с которой этот запас тает... уровня мировых лидеров. На нанотехнологии (а это один из...

  • Современные экономические отношения РФ со странами Европы

    Реферат >> Экономика

    Отношений и Европы 3.2. Особенности современных международных экономических отношений в... валютно-финансовые отношения. В современном мире особенно актуальным является глобализация и... -производственного центра на базе нанотехнологий . В свою очередь, заметно...

  • Понятие наноиндустрии. Её роль в современном обществе

    Реферат >> Экономика

    Гонки ведущих экономик мира в исследовательских программах в сфере нанотехнологий . Российский рынок нанотехнологий находится на... глобальной конкурентоспособности. В современных условиях на лидирующие позиции в развитии нанотехнологий активно претендует и КНР...

  • В последние годы мы все чаще слышим слова: "нанонаука", "нанотехнологии", "наноструктурированные материалы": мы слышим их по радио и на телевидении, замечаем в речах не только ученых, но и политиков. Нанотехнологиям отдается высокий приоритет при финансировании научных и инновационных программ во всех развитых странах мира. Например, Япония является мировым лидером по созданию наноматериалов, в США исследования в области нанотехнологий получают щедрое финансирование как от государства, так и из бизнеса и даже от частных лиц, Евросоюз принял свою рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции. Недавно наш президент объявил о высоком приоритете развития нанотехнологий, обращая внимание на особую роль нанотехнологий для обороноспособности нашей страны. На это выделяются немалые средства из Резервного фонда страны. Минпромнауки РФ и РАН также имеют свои перечни приоритетных, прорывных технологий с приставкой "нано-".

    Так что же означает слово «нано»? Что такое нанотехнологии и почему им уделяется такое внимание во всем мире? Почему это называют "революционным прорывом в технологиях", что это сулит нам, простым людям, и чем, возможно, это грозит миру? Давайте попробуем разобраться с этими вопросами.

    Кудухова Лариса Ильинична, 13.03.2017

    1593 183

    Содержимое разработки



    Цель научной работы заключается в комплексной характеристике нанотехнологий, с учетом специфики и всех особенностей данной области прикладной науки.


    Объектом настоящего исследования является нанотехнология как область науки и техники, а предметом – особенности применения нанотехнологии.


    К основным задачам работы относятся:

    1. Определение понятия «нанотехнология».

    2. Рассмотрение истории развития нанотехнологии в мире вообще и в России в частности.

    3. Выяснение прикладного аспекта нанотехнологий, то есть особенностей применения в различных отраслях.

    4. Анализ возможностей, способов и методов применения нанотехнологий.

    5. Выделение технологических особенностей применения нанотехнологий.

    6. Указание и прогнозирование перспектив развития нанотехнологий в России.


    Нанотехнология ‑ совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба



    Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.


    Применение нанотехнологий.

    Наноэлектроника и нанофотоника

    Одной из перспективнейших отраслей применения нанотехнологий является компьютерная техника.

    Компании, занимающиеся нанофотоникой, разрабатывают высокоинтегрированные компоненты оптических коммуникаций с применением технологий нанооптики и нанопроизводства. Такой подход к изготовлению оптических компонентов позволяет ускорить получение их прототипов, улучшить технические характеристики, уменьшить размеры и снизить стоимость.


    Наноэнергетика

    Солнечные батареи.


    • Компания Toshiba разработала литиево-ионную батарею на основе наноматериалов, которая заряжается примерно в 60 раз быстрее обычной. За одну минуту её можно заправить на 80%.

    • Наноструктурированные материалы. В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань.
    • 2. Наночастицы. Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и заболеваниями сосудов.

    • 3. Микро- и нанокапсулы. Миниатюрные (~1 мк) капсулы с нанопорами могут быть использованы для доставки лекарственных средств в нужное место организма.
    • 4. Нанотехнологические сенсоры и анализаторы. Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот, обнаружения возбудителей инфекционных заболеваний, токсических веществ.

    5. Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы.

    6. Наноинструменты. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.


    Нанокосметика

    Несколько лет назад L"Oreal выпустила на рынок знаменитый крем Revitalift, содержащий наносомы Про-Ретинола А, и, по заверению компании, этот крем впитывается в кожу куда лучше, чем кремы других марок, за счет особых микрочастиц


    • Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства


    Нанотехнологии для сельского хозяйства и пищевой промышленности

    Нанотехнологии уже используют для обеззараживания воздуха и различных материалов, в том числе кормов и конечной продукции животноводства; обработки семян и урожая в целях его сохранения. Их применяют при стимуляции роста растений; лечении животных; улучшении качества кормов