Полет к другим звездам космические корабли будущего. Межзвездные полеты. Технологии будущего, основанные на известной физике

Феоктистов К. Полет к звездам //Квант. - 1990. - № 9. - С. 50-57.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Почти с самого начала космических работ стало ясно, что пространство Солнечной системы, ее планеты находятся в пределах досягаемости космических аппаратов и кораблей, которые мы можем создать, и, следовательно, люди смогут если не высадиться, то во всяком случае добраться до любой планеты. Но одновременно стало проясняться в сознании, что здесь, «дома», скорее всего ничего необычного мы не найдем. Маловероятно, что по данным, полученным в путешествиях по нашей системе, мы существенно продвинемся вперед в понимании мира, в котором живем.

Естественно, возникала мысль о полетах к звездам. Да это и раньше подразумевалось, что полеты около Земли, полеты к другим планетам Солнечной системы не являются конечной целью. Проложить дорогу к звездам - вот что казалось главной задачей космической техники. Это представлялось очевидным.

Значит, нужно было начинать думать о звездных кораблях.

Каким должен быть этот корабль? Как его построить? Какие проблемы нужно решить, чтобы звездные полеты оказались возможны? Размышления, самые простые оценочные расчеты показали, что здесь возникают принципиальные трудности.

Первая - время. Даже если построить звездный корабль, который сможет летать со скоростью, близкой к скорости света (скажем, со скоростью около 0,7 с), время путешествий будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр Галактики порядка 100 000 световых лет (за год свет «проходит» расстояние 365,25·86400·3·10 8 ≈ 10 16 м, т. е. десять тысяч миллиардов километров).

Что останется даже от замороженых космонавтов к концу путешествия? Или от их зародышей? Да и вправе ли мы решать судьбу еще не родившихся людей? (Это едва ли лучше, чем, не мучаясь сомнениями, облагодетельствовать потомков жизнью при социализме, не представляя, что это такое, каким он будет, можно ли при нем будет жить, и определить для них на вечные времена некую руководящую и направляющую силу.) А если решить эти проблемы - то ведь после путешествия они вернутся в совершенно другой мир. Посмотрите на изменения в течение последних 200 лет, и станет понятным, что вернувшийся из дальнего путешествия космонавт окажется в совершенно чужом мире: путешествие к звездам всегда будет «односторонним». Для окружающих, родных, друзей это будет чем-то вроде самоубийства.

Вторая трудность - опасный поток газа и пыли. Пространство между звездами не пустое. Везде есть остатки газа, пыли, потоки частиц. При движении звездного корабля со скоростью, близкой к скорости света, они создадут поток высокой энергии, который будет воздействовать на корабль.

Мощность потока энергии от частиц, с которыми сталкивается тело, движущееся со скоростью υ (без учета релятивистских эффектов) можно оценить по формуле

\(~W = n \upsilon \dfrac{m_1 \upsilon^2}{2} = \dfrac{nm_1 \upsilon^3}{2} .\)

Здесь n - концентрация частиц в межзвездном пространстве ([n ]= 1/м 3), - число частиц, налетающих на 1 м 2 поверхности тела за время 1 с (1/(м 2 ·с)), m 1 - масса частицы (кг), \(~\dfrac{m_1 \upsilon^2}{2}\) - энергия каждой частицы (Дж) относительно корабля.

Галактический газ состоит в основном из водорода. Масса атома водорода ~ 1,7·10 -27 кг. Концентрация частиц в среднем в Галактике ~ 0,5·10 6 м -3 , в рукавах Галактики ~ 10 6 м -3 , в облаках водорода ~ 2·10 7 м -3 . Масса пыли в межзвездном пространстве примерно в 100 раз меньше массы газа.

Этот поток можно оценить следующими величинами: мощность потока частиц и газа 10 4 - 10 5 Вт/м 2 , потока пыли 10 2 - 10 3 Вт/м 2 , поток частиц - это 3·10 14 частиц/(с·м 2) с энергией каждой частицы порядка 500 МэВ. Воздействие этих потоков приведет к испарению любого защитного экрана и к недопустимо высоким для длительного полета мощностям дозы радиации.

Третья трудность - энергетика. Если в движителе корабля использовать наиболее эффективную термоядерную реакцию, то для путешествия в оба конца со скоростью порядка скорости света даже при идеальной конструкции корабля отношение начальной и конечной масс его оказывается больше 10 30 , что представляется нереализуемым.

Оценку минимального потребного соотношения масс (начальной и конечной) звездного корабля с термоядерным движителем, летящего со скоростью, близкой к скорости света (но позволяющей не учитывать в первом приближении релятивистские поправки), можно провести следующим образом.

Наиболее эффективная термоядерная реакция -

\(~^2_1D + \ ^3_1T \to \ ^4_2He + \ ^1_0n + \ 17,6\) МэВ,

причем 14,1 МэВ из этих 17,6 уносятся нейтронами. Таким образом, для ускорения гелия в движителе можно будет использовать энергию E ~ 3,5 МэВ на один атом гелия. Максимальную скорость истечения гелия в идеальном движителе можно вычислить из соотношения \(~E_1 = \dfrac{m_1 \upsilon^2_i}{2}\) :

\(~\upsilon_i = \sqrt{\dfrac{2E_1}{m_1}}.\)

Подставляя массу атома гелия m 1 ≈ 4·1,67·10 8 кг и E 1 ≈ 3,5·10 6 эВ ≈ 3,5·10 6 ·1,6·10 -19 Дж ≈ 5,6·10 -13 Дж, получаем υ i ≈ 1,3·10 7 м/с.

Соотношение начальной и конечной масс звездного корабля (без учета релятивистских поправок) определяется формулой Циолковского:

\(~\dfrac{M_0}{M_k} = e^{\dfrac{4 \upsilon_k}{\upsilon_n}},\)

где υ k - максимальная скорость полета корабля. Приняв υ k ~ 0,7 с, получим:

\(~\dfrac{M_0}{M_k} \sim e^{\dfrac{4 \cdot 0,7 \cdot 3 \cdot 10^7}{1,3 \cdot 10^7}} \sim e^{70} \sim 2,5 \cdot 10^{30}. \)

Если же думать о фотонном движителе, использующем аннигиляцию материи, то здесь пока одни проблемы (хранение гигантских запасов антивещества, защита зеркала отражателя фотонов от выделяемой энергии и от остатков несреагировавшего антивещества, времена разгона, размеры и т. п.) и не видно решений.

Искушенный читатель, возможно, скажет: но ведь эти оценки сделаны без релятивистских поправок. А что до фотонного движителя - поживем, разберемся и как-нибудь сделаем.

Попробуем показать, что с учетом релятивистских поправок картина получается не лучше. Представим себе Галактический фотонный корабль, способный летать со скоростью, достаточно близкой к скорости света. Собственное время полета космонавта туда и обратно на расстояние порядка половины диаметра Галактики при оптимальном графике полета (непрерывный разгон, а затем - непрерывное торможение) составит 42 года. На Земле при этом пройдет 100 000 лет (см. рисунок).

График космического полета с точек зрения космонавта (а) и земного наблюдателя (б).
а) Собственное время полета космонавта τ e можно рассчитать по формуле
\(~\tau_e = \dfrac{4c}{a} \cdot \operatorname{arch} \left(1 + a \cdot \dfrac{S}{2c^2} \right).\)
(Здесь arch - одна из обратных так называемых гиперболических функций - гиперболический арккосинус\[~\operatorname{arch} x = \ln (x \pm \sqrt{x^2 - 1)}\].) Подставляя скорость света c = 3·10 8 м/с, ускорение a = 9,8 м/с 2 (привычная нагрузка для космонавта-землянина), дальность полета S ≈ 4,7·10 20 м, получаем τ e ≈ 42 года. Скорость в корабельной системе - \(~\upsilon_e \approx \int_{\tau_e} adt\).
б) На Земле при этом пройдет время \(~\tau_z = \dfrac{\tau_e \cdot \operatorname{sh} \operatorname{arch} \left(1 + a \cdot \dfrac{aS}{2c^2} \right)}{\operatorname{arch} \left(1 + a \cdot \dfrac{aS}{2c^2} \right)}\) ≈ 100 000 лет
(\(~\operatorname{sh} x = \dfrac{e^x - e^{-x}}{2}\) - так называемый гиперболический синус).

Предположим, что нам удалось получить идеальный процесс в фотонном движителе, сделать идеальную конструкцию с нулевой массой баков, экранов, отражающего зеркала, насосов и других элементов, и попробуем оценить некоторые параметры такого идеального корабля. Отношение начальной массы корабля к конечной составит ~ 7·10 18 . Это означает, что при массе жилых и служебных помещений и аппаратуры (т. е. того, что везет корабль) всего 100 тонн стартовая масса составит ~ 7·10 20 тонн - больше массы Луны! Причем половина этой массы - антивещество.

Чтобы обеспечить ускорение 9,8 м/с 2 , движитель должен развить тягу Р ~ 10 24 Н. Чтобы получить такую тягу, нужно в фокусе зеркала разместить источник излучения с мощностью порядка 10 33 Вт (эту оценку мы получили по формуле \(~W = \dfrac{Pc}{2}\)). Напомним, что мощность излучения нашего Солнца менее 4·10 26 Вт, т. е. в фокусе фотонного движителя корабля нужно зажечь миллионы Солнц (и поддерживать это «горение»)! Есть теоретическое предложение везти с собой только антивещество. Тогда эти цифры сокращаются, но все равно остаются совершенно фантастическими - в фокусе зеркала фотонного движителя оказывается необходимым зажечь сотни, тысячи Солнц.

Из наших сегодняшних представлений о мире складывается впечатление: нельзя решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света. Похоже, бессмысленно «ломиться» через пространство и время с помощью механической конструкции. Нужно найти способ межзвездных путешествий, не связанный с необходимостью транспортировки материального тела. И тут мы приходим к идее, давно обкатываемой в фантастической литературе,- о путешествиях разумных существ в виде пакета информации.

Электромагнитные волны распространяются практически без потерь во всей наблюдаемой Вселенной. Возможно, здесь и есть ключ к межзвездным полетам.

Если не впадать в мистику, то следует признать, что личность современного органического человека нельзя отделить от тела. Но можно представить специально сконструированного человека, у которого личность и тело разделимы. Аналогично тому, как математическое обеспечение может быть отделено от конструкции современных ЭВМ.

Личность - это индивидуальный комплекс особенностей данного человека в его восприятии внешнего мира, в его реакциях на принимаемую информацию, в его воображении, симпатиях и антипатиях, в его знаниях и т. п.

Личность существует на полях операций и в запоминающих устройствах. Эти поля и устройства - наш мозг, тот материальный носитель, на котором живет и действует интеллект человека, на котором записаны (и непрерывно пополняются, совершенствуются, устаревают и портятся) алгоритмы восприятия и анализа информации, синтеза картины внешнего мира, алгоритмы оценок и пристрастий, промежуточные результаты «вычислений», выводов. Это поле, на котором располагается наше Я. Оно живет как Я тогда, когда человек думает, принимает решения, испытывает эстетическое наслаждение или отвращение, т. е. когда идут операции интеллекта на этом поле операций. Эти операции и есть жизнь личности или, если угодно, жизнь души.

Если пакет информации, являющийся полным содержанием личности, может быть переписан с полей операций и запоминающих устройств, то этот пакет информации может быть и передан по радиолинии на приемную станцию назначения и там переписан в стандартный материальный носитель (или выбираемый по прейскуранту, или...), в котором он сможет жить, действовать и удовлетворять свое любопытство. Во время передачи его пакета информации человек не живет. Для того чтобы он мог жить, необходим материальный носитель.

Такой способ решения задачи полета к звездам стал бы реализацией не только сюжетов современной фантастики, но и сюжетов древних мифов о вознесениях на небо или мгновенных свержений в ад. Это было бы «экспериментальным решением» философских споров о сути человека, о бренности телесной оболочки, о сути бытия. Что есть человек? И что есть истина? Интересно, что выдающиеся философы в разные эпохи, от античности до нашего времени, путем логического анализа (основанного не на знании) приходили к вполне современным представлениям о соотношении между сутью и телом человека. Жизнь человека - это жизнь его души, это бьющаяся мысль о себе («что я?»), о мире вне себя и в себе, это восприятие красоты и отторжение примитива и неправды, это свобода мысли и анализа. Мы здесь, мы живем, пока способны размышлять, оценивать, перерабатывать информацию и генерировать ее. Остальное во мне, тело мое - для обслуживания.

Головной мозг - поле математических операций над символами, числами, понятиями. Но сами операции, мысли, наши переживания - это нечто такое, чего нельзя взять в руки. Человек во все времена пытался материализовать это нечто в виде звуков, слов, рассказов, рукописей, книг... Но всегда это оказывалось лишь тенью, слабым отражением этого нечто.

Тело - обслуживающие системы поля математических операций (питание, очистка, перемещения, связь с внешним миром). Но подавляющее большинство людей, почти все и почти всегда, никогда не различали свое Я и свое тело. И всегда стремились получше его, тело, устроить (в общем-то не зря - без питания умирает головной мозг, распадается поле операций, исчезает личность). Это стремление из поколения в поколение оставалось главной движущей силой человеческого рода. Оно определяло и граби- телЬские походы, и создание новых технологий, и стремление к лучшей организации жизни и общества (в том числе и методом «грабь награбленное», замаскированным лозунгом «долой эксплуататоров»). Дома, автомобили, самолеты, газ и электричество, вычислительная техника родились из этого стремления. Устроить получше свое тело было и остается пока главным движителем в жизни людей. А ведь на самом деле - это все вторичное. Впрочем, говорится это не к тому, что не надо заботиться о теле, 6 мыле, о хлебе насущном. В здоровом теле компьютер работает с меньшим количеством сбоев, с большей скоростью, с более разнообразными и эффективными алгоритмами, обеспечивает большую внутреннюю устойчивость к внешним угрозам и неприятностям. И, главное,- ясность мышления. Но если говорить о главном в отношениях нашего Я с внешним миром, то это - свобода.

Фотонная ракета - мечта, к которой будут стремиться многие поколения наших потомков? или идея фикс, устаревшая едва родившись? (На рисунке - одна из воображаемых конструкций. Длина ракеты более 9,5 км, численность экипажа 300-500 человек.)

Все это говорилось здесь к тому, чтобы напомнить: наше Я, наша индивидуальность, наша суть - это не материальная оболочка. Нет ничего криминального, противоречащего нашему восприятию мира в мысли о возможности разделения индивидуальности и ее материального носителя.

Поэтому с инженерной точки зрения можно сконструировать такой мир, где душу человека можно отделить от тела. В таком мире человек может перемещаться из одного места в другое - скажем, в пределах Солнечной системы - практически мгновенно. Например, для выбранного ¦резидента» можно было бы в достаточно большом количестве центров иметь его базовый пакет информации и передавать только изменения, отражающие его состояние в данный момент времени, и сигнал о его включении в этом месте. В этом же мире можно представить и вселение души (духа?) данного человека в чужое тело. (Какую путаницу можно представить! Даже нам до них будет далеко.)

Возможно ли создать такое существо? Какие стимулы жизни мы должны заложить в него? Мне кажется, именно здесь будет главная проблема. Мы - дело другое. Мы продукт органической эволюции. В нас глубоко заложен инстинкт жизни, инстинкт продолжения рода. Вид, у которого этого инстинкта не было или он был недостаточно развит, не выживал в условиях естественного отбора. Да что там естественный отбор. Когда за возрастом, здоровьем, условиями жизни умирает этот инстинкт - у людей пропадает желание жить. А какой же стимул жизни мы сможем предложить нашему творению? Любопытство? Желание быть полезным людям, создавшим его тело (бренное и сменяемое) и воспитавшим его личность, душу? Желание выявиться в исследованиях мира, в сверхдальних путешествиях, в создании приемно-передающих станций для путешествий, в строительстве космических околозвездных баз?

Убедительны ли эти стимулы? Откуда ему взять привязанность и любовь к ближним? Как воспитать его, чтобы он не оказался монстром с нелепыми и бессмысленными устремлениями к власти, к возможности давать указания, воспитывать и слыть благодетелем? или, наоборот, чтобы он не оказался инфантильным, безынициативным существом, равнодушным к миру, к ближним и к самому себе?

И, конечно, громадные технические проблемы.

Как мы мыслим? Как создаются стереотипы наших реакций, поведения, оценок, как создается наша индивидуальность? Есть подозрение, что наши алгоритмы видения окружающего мира, анализа, мышления создаются каждый раз заново и почти всегда по-иному, и их характер определяется семьей, приятелями и недругами, школой, структурой общества, радостями, огорчениями и удачами нашего детства. В обществе рабов вырастают рабы, в обществе свободных - люди независимые и т. д.

С этой точки зрения очень опасно стандартизировать приемы воспитания, ясли, детские сады, школы... Это самое страшное, что можно сделать для своего будущего. Человечество сильно различностью, разнообразием, индивидуальностями. Конечно, некоторые основы должны быть общими: не убий, не укради, не пожелай... Но готовить человека по стандарту (пусть даже самому высокому) - это готовить собственную гибель.

Как, не понимая всех этих вещей, приступать к созданию искусственного интеллекта? А главное - трагические ошибки и неудачи, которые нас ждут на этой дороге.

Даже здоровое разумное существо нуждается в поддержке и защите, в признании, в ощущении осмысленности своей жизни, своей полноценности и полноправности. Ошибки в идеях разработки, при изготовлении, в воспитании, недостаточная порядочность создателей могут привести к сотворению существ-инвалидов, психически ненормальных и, главное, несчастных. Ведь это все есть у нас, людей: уроды и инвалиды, выращенные, а потом брошенные в равнодушный мир домашние кошки и собаки, брошенные дети и старики...

Но мысль уже вошла в сознание самых любопытных, сообразительных и предприимчивых. Пожалуй, задача создания искусственного интеллекта стала самой популярной задачей нашего времени. Надо думать, это дело пойдет.

Появятся и более понятные трудности.

Чтобы отправить личность в виде пакета информации в галактическое путешествие, надо создать приемные и передающие станции (например, в радиодиапазоне), развезти (например, с помощью автоматических космических аппаратов) эти станции к возможным пунктам назначения (невдалеке от какой-либо звезды для обеспечения станций энергией). Если личность передавать по радиоканалу на галактические расстояния, то придется создавать антенны размером порядка километров, передатчики мощностью порядка 10 8 кВт. Скорости автоматических космических аппаратов, которые летают сейчас, составляют десятки километров в секунду. Представляются достижимыми скорости порядка сотен и даже тысяч километров в секунду. Но это означает, что время развозки по Галактике составит для землян миллионы и даже сотни миллионов лет. Доставка станций даже к ближайшим звездам, находящимся от нас в десятках световых лет, потребует десятков тысячелетий. За это время может быть утерян интерес к предприятию. Тем не менее этот путь - в рамках возможного.

Можно развозить не приемно-пере- дающие станции, а технологию, инструменты, роботов для создания таких станций на месте.

Можно предложить и другой путь осуществления звездных путешествий, а именно - выйти на связь с другими цивилизациями, передать им информацию о строительстве приемно-передающей станции, пригодной для приема и возвращения «наших людей», информацию, необходимую для создания стандартного материального носителя, и таким способом наладить галактические путешествия (тоже идея из фантастики - вспомните, например, «Черное облако»). Тут появляется в рассуждениях старая задача: как выйти на связь с другими цивилизациями? Естественный путь - создать «маяк», получить обратный запрос и вступить в связь. Если исходить из идеи создания импульсного маяка, получающего энергию от звезды, с солнечными батареями мощностью порядка 10 9 кВт (здесь данные применительно к радиомаяку с полосой частот передачи всего 100 Гц), то можно рассчитывать на абонентов, находящихся на расстояниях до пятидесяти тысяч световых лет и имеющих около своей звезды приемные антенны с размерами до 10-20 км. Величины 10 9 кВт не следует пугаться. Солнечные батареи такой мощности должны иметь размеры 100 × 100 км - гигантские, но вообще реальные размеры. Подобную конструкцию можно представить в виде легкой плоской фермы, на которой натянуты пленочные фотоэлементы.

Сроки реализации такой связи составят тысячи и десятки тысяч лет. Уже, правда, не миллионы, но все равно долго.

Может ли быть более короткий путь?

Если другие цивилизации избрали ранее этот путь освоения Галактики, то они могли уже создать и свои «маяки». Значит - искать эти маяки. Создать приемные антенны, способные принять сигналы галактических маяков.

Радиотелескопы с антеннами порядка километров и более можно создать в околосолнечном пространстве. А где искать? Может быть, в центре Галактики? или вдоль средних линий спиральных рукавов? в шаровых звездных скоплениях?

Так или иначе, но это уже десятилетия, а не тысячи и не миллионы лет.

А нет ли еще более простого способа выхода на связь с другими цивилизациями?

Предположим, что представители других цивилизаций уже были (или есть?) на Земле или в Солнечной системе. Какими могут быть следы их деятельности? Где могут располагаться приемно-передающие станции (в том числе промежуточные)?

Тут два направления поиска. Одно - космические люди. Какими их следует ожидать: размеры, особенности их жизни (может быть, например, им не нужны атмосфера и органика для энергопитания, вакуум - их естественная среда обитания...)? Почему они сами не вступили в контакт или почему они не хотят вступать с нами в контакт? Другое направление - поиски их средств связи, приема и передачи путешественников и информации.

Цель таких размышлений на грани фантастики - заглянуть вперед, чтобы понять свои дальние цели, чтобы определить перспективные направления сверхдальнего поиска, сверить эти направления с актуальными проблемами экологии и экономики, обустройства жизни людей на Земле, с интересными на сегодня научными задачами исследования Вселенной и Земли. И из этого анализа выявить направления работ, на которые стоит тратить общие средства, энергию и интеллект людей. Это нужно для того, чтобы взвешенно и разумно сделать выбор, чтобы не тратить зря усилия и средства.

Примеров нелепых решений XX век видел достаточно много. Можно, например, вспомнить о работах в нашей стране над созданием суперракеты H1. Эти работы проводились в шестидесятые годы и были прекращены в 1973 году. Для чего она была нужна? Высаживать экспедицию на Луну? Но параметры ракеты не были увязаны с массой кораблей. Потрясти мир? Шокировать американцев? Или, может быть, для того, чтобы выводить на орбиту какие-то громадные космические аппараты с массой около 100 тонн? Но таких проектов ни тогда, ни сейчас, спустя двадцать лет, не было и нет.

А работы по созданию ракеты «Энергия»? Зачем? Для вывода на орбиты космических аппаратов с массой порядка 100 тонн. Но ведь их нет! И проектов нет!

Или наше последнее «эпохальное» достижение - система «Энергия - Буран». Работы проводились с большим напряжением. Закрывались и отодвигались другие космические и некосмические работы. Истрачены громадные средства. Для чего? Чтобы получить свою «игрушку» и показать, что мы не хуже американцев умеем зря тратить деньги? «Буран» может возвращать с орбиты космические аппараты. Но таких аппаратов, которые требовали бы возвращения с орбиты и стоимость которых была бы больше стоимости запусков «Бурана», нет. Доставка же аппаратов на орбиту с помощью «Бурана» в десятки раз дороже, чем с помощью давно существующих носителей. Так зачем же?

Надо сказать, что упрек в крайне неудачных выборах крупных целей относится не только к нашим чиновникам, но и к американским (Лунная программа, «Шаттл»). В принципе, чиновники везде одинаковы - они ведь распоряжаются не своими деньгами.

Размышления о полете к звездам позволяют выделить несколько интересных направлений работ:

Исследования возможности создания и разработка искусственного интеллекта; - конструирование космических роботов с последующим переходом к созданию человека космоса, личность которого может отделяться от материального носителя и передаваться в виде пакета информации со скоростью света; - разработка идеологии и конструкции «маяков», методов их поиска; - разработка и создание все более крупных радио- и оптических телескопов, с размерами радиоантенн порядка сотен и тысяч метров; - поиск «чужих» выходных каналов связи с Земли, более тонкое (с большим разрешением) фотографирование и изучение поверхности Луны (особенно обратной стороны) и других планет Солнечной системы в поисках средств связи других цивилизаций.

Эти направления работ хорошо коррелируют с современными нуждами человечества.

Первое послание человечества к далеким мирам, установленное на К А «Пионер-10» (1972). Через несколько миллионов лет оно окажется там, где сейчас находится звезда Альдебаран. Не станут ли его получателями наши потомки?

Работы по искусственному интеллекту связаны с решением задачи создания достаточно эффективных роботов, которые могли бы заменить людей на опасных производствах, избавить их от тяжелого физического труда, от рутинной нетворческой работы, помогли бы нам в освоении акваторий и подводного мира. Создание космических роботов - назревшая задача. При работах в открытом космосе они будут более эффективны, чем человек в скафандре. А работы в открытом космосе скорее всего будут развиваться в ближайшие десятилетия: строительство на орбитах экономически эффективных заводов, где в производственных процессах будет использоваться отсутствие силы тяжести, заводов, которые нельзя оставить на Земле из-за их экологической вредности.

Создание больших радиотелескопов позволит вести эффективные исследования и на границах Вселенной, и в центре Галактики...

Этот анализ можно и нужно продолжить. Только совместное рассмотрение ближних и дальних задач позволяет правильно выбирать цели и принимать разумные решения.

Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

Изучая данные полученные с телескопа «Кеплер» астрономы обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно - из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей. Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Полет к другим звездам - это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок - 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом - постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.

Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 4 и 2 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10-15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности. Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая - 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млн топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света. Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541-2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длинною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает, что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года. Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Тор Стенфорда – колоссальное сооружение с целыми городами внутри вращающегося обода.

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы - Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это - огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9-1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.

В любом случае корабль на 10 тыс. человек – сомнительная затея. Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек. Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими. В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз - это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы - клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит - отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости - в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу.

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5-7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное - фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.

Космическая эра началась 4 октября 1957 года. Вряд ли стоит еще и еще раз описывать подробности этого дня. Они стали каноническими. Важнее сам факт: в космос, на орбиту Земли, Советским Союзом был запущен первый в мире искусственный спутник.

Пройдемся по первым ступеням пока еще немногочисленных этапов освоения выхода в космическое пространство. Нам это нетрудно сделать, потому что многие из них отмечены цветами нашей страны.

2 января 1959 года первая космическая ракета «Мечта» ушла с советского космодрома в сторону Луны и стала первой искусственной планетой солнечной системы.

12 сентября 1959 года вторая космическая ракета «Луна-2» доставила на поверхность спутника Земли первый вымпел с изображением герба Советского Союза. Первый заявочный столб в космосе.

12 февраля 1961 года многоступенчатая ракета вывела на орбиту второй советский тяжелый спутник Земли, с которого в тот же день стартовала управляемая с Земли космическая ракета. Она вывела на траекторию к Венере автоматическую межпланетную станцию «Венера-1».

1 ноября 1962 года советская автоматическая станция «Марс-1» отправилась к нашему внешнему соседу - планете Марс.

10 ноября 1968 года советская автоматическая станция «Зонд-6» полетела к Луне, обогнула ее и вернулась на Землю не просто камнем из пространства, а используя аэродинамические свойства самого корабля. Первый планетолет.

23 июля 1969 года. Специальная кабина американского космического корабля «Аполлон-11» прилунилась на поверхности естественного спутника Земли, и на Луну впервые ступила нога человека.

Первым вышел из кабины астронавт Нейл Армстронг. За ним последовал и его товарищ по полету Эдвин Олдрин.

Это ступени этапов. За каждой из них - длинный ряд отработок, совершенствований, целая лестница закрепления результатов. Применяя оптимистическую экстраполяцию этих начинаний, легко поддаться искушению высчитать год и день отправки первого межзвездного корабля. Давайте и мы попробуем составить «гороскоп астронавтики».

2. Расстояние, время, скорость, относительность

Земля - песчинка космоса: привычное сравнение для уничижения рода человеческого. А что, если действительно представить себе нашу планету уменьшенной до размеров песчинки? Можно, правда, пойти по другому пути. Представить себя выросшим до размеров этакого «супермикромегаса», для которого Земля - песчинка. В принципе разницы никакой - все в мире относительно, а кое-кому из читателей, может быть, второй вариант придется больше по вкусу.

Так или иначе Земля - песчинка. Масштаб 1:180 миллиардам. Тогда Солнце своими размерами не превзойдет горошину. А расстояние между песчинкой и горошиной не должно быть больше метра. Тут же, в пределах нескольких шагов, лежат орбиты планет, на которые уже припланетились первые земные планетолеты. Но нас интересуют звезды. Каким будет в наших масштабах расстояние… ну, хоть до ближайшей - Проксимы Центавра?

Не оглядывайтесь вокруг, не влезайте на дерево, не садитесь на велосипед. Следующая «горошина» затерялась примерно в 220 километрах от нашей «песчинки», поди найди! Сотни километров - и песчинки с горошинами. А ведь это Проксима! Ближайшая! До нее, астрономы считают, рукой подать, всего 40 420 000 000 000 000 километров - пустяк. В том же масштабе расстояние до самой популярной соседней галактики - Туманности Андромеды, равно… радиусу земной орбиты! И все это опять для песчинок с горошинами.

Такие расстояния заставляют задумываться. Ведь для того чтобы современной ракете преодолеть путь до Проксимы Центавра, ей придется лететь 76 тысяч лет. Право, такое долгое путешествие по однообразной космической пустыне может и поднадоесть. Единственный способ сократить расстояние, а следовательно, и сроки полетов - увеличивать скорость. Но до каких пор? Очевидно, до максимально возможной. А это - скорость света!



Луч мчится от Проксимы Центавра до Земли 4,29 года. Скорость света - физический предел - 300 тысяч километров в секунду. Больше не бывает.

Ну, а если цель поездки отстоит от Солнца, например, на 160 световых лет, как Спика из созвездия Девы, или Бетельгейзе - на 650 световых лет, как быть тогда? Ведь одной человеческой жизни на такую поездку все равно не хватит. А значит, отдаленным звездам вряд ли дождаться скоро земных туристов!

И тут мы вступаем в царство относительности. Земные законы в этом царстве трещат по всем швам, а привычные физические формулы приобретают релятивистскую поправку. (Впрочем, раз уж мы заговорили о звездном туризме, то не следует ли говорить не «релятивистский», а «релятивистический»? Ведь пустил же какой-то грамотей термин «туристический» вместо «туристский».)

А теперь пришло время взглянуть на эти формулы. К ним придется привыкнуть пассажиру звездолета, ничего не поделаешь. А приводятся они здесь еще по двум причинам: во-первых, сами по себе они поучительны и наглядны, способствуя тем самым поднятию эрудиции; во-вторых, без формул сейчас не обходится ни одна книжка вообще, даже если в ней говорится о воспитании щенка легавой собаки. Наконец, немаловажную роль сыграло и то, что приводимые уравнения встречаются сегодня не менее часто, чем фольклорные фрески в общественных местах. И потому привести их в книжке автору ничего не стоит.



Начинать, конечно, надо с того, что самым драматическим и захватывающим утверждением теории относительности является так называемый «парадокс близнецов». Смысл его в том, что, когда скорость ракеты приближается к световой, часы участников полета начинают безнадежно отставать от земных. При этом, правда, все авторы стыдливо обходят вопрос о справедливости данного утверждения для ускорений и замедлений движения, для полетов по прямой или по замкнутой кривой. Не будем и мы считать себя умнее других. В конце концов на звезды пока никто всерьез не собирается, а Эйнштейн, увы, умер.

Итак, в ракете, которая, стартовав с Земли, летит с субсветовой скоростью, время тянется по закону:

А на покинутой и безутешной Земле время, то самое Т 0 , бежит куда быстрее. И чем ближе подбираемся мы к скорости света, тем медленнее течет ракетное время, грозясь в пределе остановиться вовсе. Но зато при скорости звездолета, равной 0,996 от скорости света С, то есть 298 500 километров в секунду, 10 земных лет превращаются для астронавтов в один год!

Это же прекрасно!

Это открывает перед нами не только звезды нашей системы, но и всю вселенную. Только погоняй звездолет - и пусть себе календарь на Земле отщелкивает столетия в секунду. Надо только поскорее построить такой быстроходный корабль.

3. Когда построят звездолет?

Скорость движения ракеты определяется вылетающими из сопла частицами сгоревшего топлива. Если же из ракетных дюз заставить вырваться световые кванты или фотоны, то скорость ракет будет приближаться к физическому пределу! Значит, строить надо только фотонный звездный корабль!

Чтобы не занимать места на описание принципа действия и конструкции звездолета, автор предлагает читателю сделать это самостоятельно. Тем более что, если уважаемый читатель и присочинит что-либо от себя, большой беды не будет. Впрочем, мы забегаем вперед.

Для оценки сроков, когда возможным станет осуществление такого строительства, надо прежде всего прикинуть объем лайнера, то есть вычислить минимальную полезную массу звездолета. Сюда войдет все, чем комплектуется космический корабль, включая и живой вес экипажа. Все, за исключением горючего.




Последним «криком техники» на Земле являются, пожалуй, танкеры-гиганты водоизмещением 100 тысяч тонн. Звездному кораблю предстоит дальний и долгий путь, поэтому возьмем его размеры, не жадничая, тоже 100 тысяч тонн! Тем более что горючего понадобится, наверное, довольно много. Кстати, о горючем. Заботы о нем - не наше дело. Считаем, что физики получили супер-экстра-горючее, которое без остатка переходит в излучение, научились его хранить в магнитных или каких-либо других бутылках и построили для этого горючего двигатель, способный переваривать энергию, примерно равную энергии миллиона атомных бомб, ежесекундно и при этом оставаться целым. Наша задача - определить, «сколько горючего надо», и залить его в баки. Ах, черт возьми, снова вмешивается Эйнштейн! По мере приближения скорости к световой, начинает расти масса. Вот ее уравнение:

Разгоняясь, ракета будет тяжелеть и тяжелеть. Значит, увеличится и расход горючего. Его придется подбрасывать в топку сначала в десять, потом в сто, потом в тысячи раз больше. А ведь предстоит еще торможение при прибытии на место. Потом снова разгон и снова торможение на обратном пути. Короче говоря, по самым скромным расчетам, для разгона космического корабля массой в 100 тысяч тонн до скорости 0,995 С, вес топлива должен примерно в миллион (!) раз превзойти полезную массу конструкции и составить 100 000 000 000 тонн. Еще немного - и реактивный двигатель проще всего будет приделать прямо к земному шару.

Э, да я вижу, наш отряд строителей сильно поредел. Испугались первых трудностей? Позор! То ли еще будет дальше.

Мы продолжим мечтать. Мечтать - это так прекрасно, так возвышенно!!! В конце концов не все ли равно, как будут обойдены конструктивные трудности? Важно верить, что это сделано будет! Тем более что идея прекрасна! Тогда - верхом на идею, и вперед!

4. Рифы космоса

Нет ни одного истинного приключенческого космически-фантастического романа, герои которого не встретились бы нос к носу с метеоритом. В ином случае пустынный космос не даст никаких острых ситуаций, и жанр погибнет. (Автор говорит об этом со знанием дела, так как, написав несколько фантастических опусов, он неоднократно исправно сталкивал своих героев с метеоритами самых разных размеров.) И это не шутка. Многие даже не подозревают, какую опасность представляют собой метеориты, беспорядочно носящиеся за пределами атмосферы.

В 1932 году метеорит пробил атмосферу и, счастливо избежав полного сгорания, долетел до Земли. Выбрал место падения - Токио и… запутался в кимоно молодой японки. Хорошо, что этот опыт не распространился на страны Европы в наши дни. Юбки современных девушек вряд ли обеспечили бы космическому гостю благополучную посадку.

Известны случаи, когда метеориты падали на крыши почему-то в основном соборов. Метеориты причиняли ущерб скотоводству, убивая иногда домашних животных. А однажды небесный камень грохнулся прямо в корыто прачки. Это было еще до широкого внедрения стиральных машин и механических прачечных.

Именно за счет космического мусора, сыплющегося на поверхность нашей планеты, Земля ежедневно прибавляет в весе от десяти до ста тысяч тонн.

Скорость метеоритов, с которыми встречается Земля, различна. Она колеблется от 11 до 80 километров в секунду. Если такой камешек диаметром полсантиметра угодит в спутник, то он разворотит дыру даже в обшивке из стали толщиной в 12 миллиметров. Правда, расчеты вероятности такой встречи не могут не придать отваги даже пессимистам. В ближнем космосе встреча корабля с таким метеоритом (массой примерно в 3,5 грамма) может произойти не чаще одного раза в 30–40 тысяч лет! Можно предположить, что в межзвездных просторах вероятность встречи еще меньше. Правда, с уменьшением размеров метеорита эта вероятность растет примерно в квадратичной зависимости.

Так, при диаметре частицы вещества в 1 миллиметр две встречи подряд уже разделяются интервалом всего в 350–400 лет. При диаметре 0,5 миллиметра неприятность возможна уже через каждые 15 лет. А встречи с песчинками размером в 0,25 миллиметра могут происходить каждые четыре года.

Все вышеприведенные рассуждения касались обычных спутников или, в лучшем случае, межпланетных кораблей, путешествующих по солнечной системе. Но ведь мы летим к звездам! Опять Эйнштейн, и опять неприятности. Формула кинетической энергии тела, летящего со субсветовой скоростью, выглядит так:

где m o - масса покоя. Очень интересные расчеты сделал советский физик Сергей Михайлович Рытов. Он рассматривает встречу звездолета, мчащегося со скоростью 260 тысяч километров в секунду, с микроскопической пылинкой массой в один миллиграмм. Энергии, выделившейся при столкновении, достаточно, чтобы в буквальном смысле этого слова «испарить» 10 тонн железа. Но это еще не самое страшное. Хуже то, что при таких скоростях энергия атомных частиц в движущихся навстречу кораблю микрометеоритах значительно больше энергии связи атомов в кристаллической решетке. Значит, метеорит врежется в корпус корабля не как единый кусок вещества, способный прострелить звездолет насквозь, а как шквал тяжелых космических частиц. Проникнув в металл обшивки всего на несколько сантиметров, они там, в глубине, отдадут всю свою огромную энергию, вызвав тепловой взрыв.

Так одна-единственная крупинка вещества массой в один миллиграмм взорвет весь огромный корабль.

Но будем оптимистами. Ведь встреча с такой частицей возможна раз в полтораста лет. Авось проскочим. Ведь в основном-то пустота пуста! По современным данным, средняя плотность межзвездного пылевого вещества в Галактике около 10 -10 грамма в кубическом километре - ничтожна. Но при скорости в 260 тысяч километров в секунду каждый квадратный метр лобовой поверхности звездолета за час пройдет около 1800 кубических километров и встретит при этом наверняка 0,00018 миллиграмма распыленного вещества. Если микрометеорит массой в 1 миллиграмм испаряет 10 тонн железа, то крупица в две тысячные доли миллиграмма уж два-то килограмма корпуса наверняка сожрет. И так ежечасно. Невидимая, почти неощутимая космическая пыль будет, как наждаком, точить корпус звездолета такими темпами, что от всей полезной массы в 100 тысяч тонн через пять с небольшим лет не останется ни грамма.

А ведь мы забыли еще межзвездный газ. Водорода в пространстве больше, чем пыли. В среднем - один атом на один кубический сантиметр.

Для звездолета с субсветовой скоростью этот разреженный газ превратится в густой поток быстрых частиц высокой энергии. Ударяясь о корпус корабля, они породят ливень жестких рентгеновых лучей, от которых спрятаться можно будет только за толстенными бетонными стенами. Иначе наши астронавты погибнут, не успев насладиться необычными видами, которые откроются перед ними в иллюминаторах корабля. А посмотреть будет на что, вы в этом убедитесь, прочитав следующий раздел главы.




Однако чтобы закончить этот «жизнерадостный» перечень неожиданностей и препон, которые смелым людям нужно будет преодолеть, автор призывает бодро воскликнуть в духе Маргариты Алигер: «И все-таки я верю!..» Жаль только, что вера в науке то же, что дрова в двигателе космической ракеты.

Хотя не исключено, что придет время, и человечество, если ему удастся до этого времени дожить, вырвется к звездам. Но произойдет это таким способом, до понимания которого нам так же далеко сегодня, как современникам Гиппарха было далеко до наших с вами рассуждений.

5. Проблемы релятивистской астронавигации

Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не проходил испытания на центрифуге, отстраняли от полетов. Мудрый читатель, конечно, знает, что так тренируется вестибулярный аппарат. И хотя у представителей воздушной специальности оный аппарат, безусловно, оттренирован, летать вверх ногами или кувыркаться во всех мыслимых степенях свободы никому удовольствия не доставляет. Мы не говорим уже о том, что направить кувыркающуюся ракету точно в цель - дело в высшей степени безнадежное.

Для предотвращения неприятностей воздушные (и безвоздушные) транспортные средства снабжаются ограничителями свободы.

На корабле «Восток», вынесшем за пределы воздушной оболочки Земли первого человека, стоял целый комплекс оптико-гироскопических систем ориентирования. Гироскоп задавал направление одной из осей; автоматы, занимающиеся поиском Солнца, поворачивали корабль относительно центра тяжести и удерживали его в заданном направлении. Первый полет Ю. Гагарина прошел успешно.

Иначе было с автоматической межпланетной станцией «Венера-1». Станция держала связь с Землей при помощи остронаправленной антенны. Такие антенны представляют собой параболоиды вращения разных диаметров и посылают радиоволны узким пучком. Поддерживать точное направление помогала сложная система астроориентации. И вот примерно в середине полета радиосвязь со станцией прервалась. В чем дело?

Выяснить причину помогла старинная дружба, связывающая советских астрономов и их английских коллег. Англичане уже давно помогают нам вести наблюдения за нашими космическими летательными аппаратами, пользуясь уникальной аппаратурой на обсерватории Джодрелл Бэнк. Так вышло и на этот раз. После того как у всех нас лопнуло терпение вместе с надеждами снова услышать голос «Венеры-1», англичане все еще упорно ждали. И национальная черта не подвела. Правда, плюс к английскому терпению у них был и лучший в мире по тем временам радиотелескоп. Факт тот, что английские астрономы поймали снова нашу станцию. Но поймали так кратковременно и вскользь, что стало ясно: вышла из строя система ориентации и станцию мотает в разные стороны.

Средства астронавигации при межпланетных перелетах - это едва ли не главное (наряду с тремястами тысячами других не менее главных деталей, составляющих начинку современной ракеты). Отклонение от курса на доли процента уведет даже межпланетный корабль далеко от цели. А как будет чувствовать себя штурман звездолета, набравшего субсветовую скорость? Что, опять Эйнштейн? Нет, на этот раз мы хоть и воспользуемся выводами специальной теории относительности, но это будет касаться той ее части, которая была подготовлена раньше Лоренцем. Здесь речь идет о преобразованиях Лоренца, связывающих координаты и время неподвижной системы (х, у, z и t) с соответствующими величинами для летающего звездолета (х′, у′, z′ и t′). Если направить ось х по курсу корабля, то формулы для преобразования примут вид:

Из-за этих преобразований для наблюдателя, движущегося со скоростью, близкой к скорости света, привычные координаты неподвижных звезд неузнаваемо изменятся. Перед носом ракеты звезды словно сбегутся, столпятся в кучу по курсу звездолета, а за кормой, наоборот, далеко разойдутся друг от друга.

По расчетам профессора С. М. Рытова, при скорости в 260 тысяч километров в секунду вся передняя полусфера звездного неба сместится вперед и заполнит конус с углом раствора всего в 30 градусов. И чем ближе будет скорость к световой, тем теснее будут толпиться звезды перед носом корабля. Так, при достижении скорости, равной 0,95 С, передняя полусфера сожмется уже в конус с углом раствора всего 18 градусов.



Но этого еще мало. Изменится спектральный состав излучения звезд. Помните эффект Допплера и наш эксперимент с лодкой, идущей против волн? Так вот, звезды, расположившиеся впереди по курсу звездолета, «поголубеют», а оказавшиеся за кормой по той же причине начнут «краснеть». При этом яркость впереди лежащих светил возрастет, а оставшихся сзади - уменьшится.

Представьте себя на минутку в положении штурмана. Поседеешь, ей-богу! А до штурмана - конструктору в пору повеситься.

Если и теперь упрямый читатель не сделал для себя определенных выводов, к которым его бережно вел автор, то последнему остается только широко развести руками. Ему, автору, самому до смерти бы хотелось полететь. Желание-то у него есть. Но вот насчет возможностей… Нет, мы начали нашу последнюю главу широким заголовком: «Полет к звездам…» и поставили многоточие. Пришла пора снять точки, написать слово НЕВОЗМОЖЕН и закрыть кавычки.

А как же фантастика?..

Во-первых, автор должен заявить со всей ответственностью, что лично он фантастику любит! Не меньше любит он и приключенческую литературу и даже, стыдно признаться, детектив. Порукой тому не только его собственные рассказы, но даже эта книга, которую он изо всех сил старался строить по детективным канонам: «Вот-вот откроется окончательная истина… Ан нет!.. И снова дежурные гипотезы, погоня за доказательствами, ошибки и движение вперед».



Автор уже много раз оправдывался в том, что он далек от мысли подвергать сомнениям основные принципы и принципиальные возможности. Ему только хотелось бы предостеречь читателя от слишком поспешного «инженерного» подхода к решению некоторых «фотонных» проблем, а с другой стороны - от чрезмерной горячности в восклицаниях: «Верую!» Правда, а как же быть все-таки с литературой?

Так ведь и тысячу лет назад существовали сказки об огнедышащих драконах и летающих колесницах. Думаете, в них так уж и верили? Вряд ли. Но от этого сказки не становились менее интересными. Помните: «Сказка - ложь, да в ней намек, добрым молодцам урок»?

Если использовать существующие технологии, времени, чтобы отправить ученых и астронавтов в межзвездную миссию, потребуется очень и очень много. Путешествие будет мучительно долгим (даже по космическим меркам). Если мы хотим осуществить такое путешествие хотя бы за одну жизнь, ну или за поколение, нам нужны более радикальные (читай: сугубо теоретические) меры. И если червоточины и подпространственные двигатели на текущий момент являются абсолютно фантастическими, много лет существовали другие идеи, в реализацию которых мы верим.

Ядерная силовая установка

Ядерная силовая установка - это теоретически возможный «двигатель» для быстрого космического путешествия. Концепцию первоначально предложил Станислав Улам в 1946 году, польско-американский математик, принимавший участие в Манхэттенском проекте, а предварительные расчеты сделали Ф. Райнес и Улам в 1947 году. Проект «Орион» был запущен в 1958 году и просуществовал до 1963-го.

Под руководством Теда Тейлора из General Atomics и физика Фримена Дайсона из Института перспективных исследований в Принстоне, «Орион» должен был использовать силу импульсных ядерных взрывов, чтобы обеспечить огромную тягу с очень высоким удельным импульсом.

В двух словах, проект «Орион» включает крупный космический аппарат, который набирает скорость за счет поддержки термоядерных боеголовок, выбрасывая бомбы позади и ускоряясь за счет взрывной волны, которая уходит в расположенный сзади «пушер», панель для толчка. После каждого толчка сила взрыва поглощается этой панелью и преобразуется в движение вперед.

Хотя по современным меркам эту конструкцию сложно назвать элегантной, преимущество концепции в том, что она обеспечивает высокую удельную тягу - то есть извлекает максимальное количество энергии из источника топлива (в данном случае ядерных бомб) при минимальных затратах. Кроме того, эта концепция может теоретически разгонять очень высокие скорости, по некоторым оценкам, до 5% от скорости света (5,4 х 10 7 км/ч).

Конечно, у этого проекта имеются неизбежные минусы. С одной стороны, корабль такого размера будет крайне дорого строить. По оценкам, которые сделал Дайсон в 1968 году, космический аппарат «Орион» на водородных бомбах весил бы от 400 000 до 4 000 000 метрических тонн. И по крайней мере три четверти этого веса будут приходиться на ядерные бомбы, каждая из которых весит примерно одну тонну.

Скромные подсчеты Дайсона показали, что общая стоимость строительства «Ориона» составила бы 367 миллиардов долларов. С поправкой на инфляцию, эта сумма выливается в 2,5 триллиона долларов, это довольно много. Даже при самых скромных оценкам, аппарат будет крайне дорогим в производстве.

Есть еще небольшая проблема радиации, которую он будет излучать, не говоря уж о ядерных отходах. Считается, что именно по этой причине проект был свернут в рамках договора о частичном запрете испытаний от 1963 года, когда мировые правительства стремились ограничить ядерные испытания и остановить чрезмерный выброс радиоактивных осадков в атмосферу планеты.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий - и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

Термоядерный ПВРД

Известный также как ПВРД Буссарда, двигатель впервые предложил физик Роберт Буссард в 1960 году. По своей сути, это улучшение стандартной термоядерной ракеты, которая использует магнитные поля для сжатия водородного топлива до точки запуска синтеза. Но в случае ПВРД, огромная электромагнитная воронка всасывает водород из межзвездной среды и сливает в реактор как топливо.

По мере того как аппарат набирает скорость, реактивная масса попадает в ограничивающее магнитное поле, которое сжимает ее до начала термоядерного синтеза. Затем магнитное поле направляет энергию в сопло ракеты, ускоряя судно. Поскольку никакие топливные баки не будут его замедлять, термоядерный ПВРД может развить скорость порядка 4% световой и отправиться куда угодно в галактику.

Тем не менее у этой миссии есть масса возможных недостатков. К примеру, проблема трения. Космический аппарат полагается на высокую скорость сбора топлива, но вместе с тем будет сталкиваться с большим количеством межзвездного водорода и терять скорость - особенно в плотных регионах галактики. Во-вторых, дейтерия и трития (которые используются в реакторах на Земле) в космосе немного, а синтез обычного водорода, которого много в космосе, пока нам неподвластен.

Впрочем, научная фантастика полюбила эту концепцию. Самым известным примером является, пожалуй, франшиза «Звездный путь», где используются «коллекторы Буссарда». В реальности же наше понимание реакторов синтеза далеко не так прекрасно, как хотелось бы.

Лазерный парус

Солнечные паруса давно считаются эффективным способом покорения Солнечной системы. Помимо того, что они относительно просты и дешевы в изготовлении, у них большой плюс: им не нужно топливо. Вместо использования ракет, нуждающихся в топливе, парус использует давление радиации звезд, чтобы разгонять сверхтонкие зеркала до высоких скоростей.

Тем не менее, в случае межзвездного перелета, такой парус придется подталкивать сфокусированными лучами энергии (лазером или микроволнами), чтобы разгонять до скорости, близкой к световой. Концепцию впервые предложил Роберт Форвард в 1984 году, физик лаборатории Hughes Aircraft.

Его идея сохраняет преимущества солнечного паруса в том, что не требует топлива на борту, а также и в том, что лазерная энергия не рассеивается на расстоянии так же, как и солнечная радиация. Таким образом, хотя лазерному парусу потребуется некоторое время, чтобы разогнаться до околосветовой скорости, он впоследствии будет ограничен только скоростью самого света.

По данным исследования Роберта Фрисби в 2000 году, директора по исследованиям передовых двигательных концепций в Лаборатории реактивного движения NASA, лазерный парус разгонится до половины световой скорости меньше чем за десять лет. Он также рассчитал, что парус диаметром 320 километров мог бы добраться до Проксимы Центавра за 12 лет. Между тем, парус 965 километров в диаметре прибудет на место всего через 9 лет.

Однако строить такой парус придется из передовых композитных материалов, чтобы избежать плавления. Что будет особенно сложно, учитывая размеры паруса. Еще хуже обстоит дело с расходами. По мнению Фрисби, лазерам потребуется стабильный поток в 17 000 тераватт энергии - примерно столько весь мир потребляет за один день.

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия - это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии - это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц - пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграмов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это - создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Варп-двигатель Алькубьерре

Любители научной фантастики, без сомнения, знакомы с концепцией варп-двигателя (или двигателя Алькубьерре). Предложенная мексиканским физиком Мигелем Алькубьерре в 1994 году, эта идея была попыткой вообразить мгновенное перемещение в пространстве без нарушения специальной теории относительности Эйнштейна. Если коротко, эта концепция включает растяжение ткани пространства-времени в волну, которая теоретически приведет к тому, что пространство перед объектом будет сжиматься, а позади - расширяться.

Объект внутри этой волны (наш корабль) сможет ехать на этой волне, будучи в «варп-пузыре», со скоростью намного превышающей релятивистскую. Поскольку корабль не движется в самом пузыре, а переносится им, законы относительности и пространства-времени нарушаться не будут. По сути, этот метод не включает движение быстрее скорости света в локальном смысле.

«Быстрее света» он только в том смысле, что корабль может достичь пункта назначения быстрее луча света, путешествующий за пределами варп-пузыря. Если предположить, что космический аппарат будет оснащен системой Алькубьерре, он доберется до Проксимы Центавра меньше чем за 4 года. Поэтому, если говорить о теоретическом межзвездном космическом путешествии, это, безусловно, наиболее перспективная технология в плане скорости.

Разумеется, вся эта концепция чрезвычайно спорная. Среди аргументов против, например, то, что она не принимает во внимание квантовую механику и может быть опровергнута теорией всего (вроде петлевой квантовой гравитации). Расчеты необходимого объема энергии также показали, что варп-двигатель будет непомерно прожорлив. Другие неопределенности включают безопасность такой системы, эффекты пространства-времени в пункте назначения и нарушения причинности.

Тем не менее в 2012 году ученый NASA Гарольд Уайт заявил, что вместе с коллегами начал исследовать возможность создания двигателя Алькубьерре. Уайт заявил, что они построили интерферометр, который будет улавливать пространственные искажения, произведенные расширением и сжатием пространства-времени метрики Алькубьерре.

В 2013 году Лаборатория реактивного движения опубликовала результаты испытаний варп-поля, которые проводились в условиях вакуума. К сожалению, результаты сочли «неубедительными». В долгосрочной перспективе мы можем выяснить, что метрика Алькубьерре нарушает один или несколько фундаментальных законов природы. И даже если его физика окажется верной, нет никаких гарантий, что систему Алькубьерре можно использовать для полетов.

В общем, все как обычно: вы родились слишком рано для путешествия к ближайшей звезде. Тем не менее, если человечество почувствует необходимость построить «межзвездный ковчег», который будет вмещать самоподдерживающееся человеческое общество, добраться до Проксимы Центавра удастся лет за сто. Если мы, конечно, захотим инвестировать в такое мероприятие.

Что касается времени, все доступные методы кажутся крайне ограниченными. И если потратить сотни тысяч лет на путешествие к ближайшей звезде может нас мало интересовать, когда наше собственное выживание стоит на кону, по мере развития космических технологий, методы будут оставаться чрезвычайно непрактичным. К моменту, когда наш ковчег доберется до ближайшей звезды, его технологии станут устаревшими, а самого человечества может уже не существовать.

Так что если мы не осуществим крупный прорыв в сфере синтеза, антиматерии или лазерных технологий, мы будем довольствоваться изучением нашей собственной Солнечной системы.