Исследовательская работа по нестандартным источникам электрической энергии. Самые необычные источники энергии Необычные альтернативные источники энергии

Вопрос об альтернативных источниках энергии рассматривается очень часто. В настоящее время многие из них применяются довольно успешно. Однако, есть огромное количество теорий и разработок, которые рассматривают довольно необычные источники. На данный момент они не являются популярными, считаются непрактичными и даже убыточными, но подают надежду. В статье для вас ТОП-5 таких необычных альтернативных источников энергии.

Энергия ветра, приливов, солнца и геотермальные источники ─ давно считаются «официальными альтернативные источниками энергии» и довольно успешно используются людьми в электроэнергию. Но на этом ученые и исследователи не останавливаются, поиски и новые разработки не прекращаются. Предлагаю вам рассмотреть необычные альтернативные источники энергии, на которые стоит обратить внимание, так как есть перспектива, что когда-нибудь они станут выгодными, эффективными и очень популярными, ведь уже сегодня они подают нам реальную надежду.

ТОП 5 необычных альтернативных источников энергии

1. Применение соленой воды для получения электроэнергии

На сегодняшний день в Норвегии уже есть первая экспериментальная электростанция, которая получает энергию из соленой воды. Создана она компанией Statkraft. Чтобы получить электроэнергию, на электростанции применяется физический эффект — осмос. То есть в результате смешивания солёной и пресной воды удается извлечь энергию из увеличивающейся энтропии жидкостей. После этого полученная энергия используется для вращения гидротурбины электрогенератора.

2. Применение топливных элементов для получения электроэнергии

Уже разработаны электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт, но на данный момент они работают в демонстрационном режиме. Их работа основана на том, что в элементе происходит сжигание топлива, и как следствие — непосредственное превращение выделяющейся энергии в электричество. Можно провести следующую аналогию: это словно дизельный электрогенератор, только без дизеля и генератора, и что радует, без дыма, шума, перегрева и с гораздо более высоким КПД.

3. Применение термогенераторов для преобразования тепловой энергии в электрическую

В данном случае, чтобы получить электрическую энергию необходим термоэлектрический эффект. Эта в принципе не новая технология стала довольно актуальной на сегодняшний день, благодаря массовому использованию энергосберегающих источников света и разных переносных электроприемников. Более того, уже с успехом применяются промышленные разработки. Примером могут служить отопительно-варочные печи со встроенными термогенераторами. Можно отметить, что в процессе своей работы они позволяют получать не только тепло, но и электроэнергию.

4. Использование пьезоэлектрических генераторов для использования кинетической энергии

На сегодняшний день уже существуют экспериментальные установки и за их счет можно получать электроэнергию в ходе использования кинетической энергии — пешеходные дорожки, турникеты на железнодорожных вокзалах, специальный танцпол со встроенными в него пьезоэлектрическими генераторами. Также уже рассматриваются идеи создания в ближайшем будущем особые «зеленые тренажерные залы». По словам производителей, группа спортивных тренажерных велосипедов в таких залах сможет генерировать до 3,6 мегаватт возобновляемой электроэнергии в год.

5. Применение наногенераторов для использования энергии колебаний

Специальный наногенератор берется в качестве источника энергии, он преобразует в электрическую энергию микроколебания в человеческом теле. Для такого устройста достаточно малейших вибраций, чтобы вырабатывать электрический ток, который позволит поддерживать работоспособность мобильных устройств. Существующие на сегодняшний день наногенераторы могут превратить любые движения и перемещения в источник энергии. Также рассматриваются довольно перспективные и необычные варианты использования наногенераторов совместно с солнечными батареями.

Вот такие источники альтернативной энергии сейчас рассматриваются как наиболее перспективные для нашего будущего.

Когда на дворе осень и приближается зима, стоит обратить свое внимание на более насущные вопросы. Чтобы холода не застали вас врасплох, позаботьтесь о том, как будете обогревать свой дом, квартиру или офис. Достойным вариантом для решения этой проблемы являются инфракрасные обогреватели, такие как, например, zenet карбоновые обогреватели. Они имеют большой ряд преимуществ: экологичные, эффективные, надежные, долговечные, безопасные и простые в использовании. Благодаря этому, они приобретают все большую популярность.

Необычные источники энергии через определенное время будут вынуждены заменить ископаемое топливо. Известно, что ископаемое топливо является причиной загрязнения, войн и изменения климата. Ученые исследовали альтернативные решения, как ветер и солнечная энергия, водородное топливо для автомобилей.

Хотя некоторые автопроизводители, как Toyota и Honda подпитывают рынок , а ветер и солнечные батареи все еще дороже, чем нефть и уголь, то необычные источники энергии могут быть лучшим решением для всех мест их использования.

Например, некоторые медицинские приборы, которые имплантированы в организм человека могут использовать супер крошечные батареи несколько десятилетий.

Ученые продолжают поиски обильной, дешевой и эффективной мощности путем расследования необычных источников энергии, даже смешных, нереальных и, в некоторых случаях, болезненных. Для того, чтобы решить надвигающиеся энергетические потребности необходимы необычные источники энергии, которые кажутся сверхнормальными. Кто знает в один день, можно будет использоваться сахар для питания ноутбука, бактерии, чтобы запустить автомобиль или мертвые тела для обогрева здания.

В итоге будет время, когда ваши внуки будут издеваться над вашим поколением за использование грязных видов ископаемого топлива для ресурсов мира. Они будут глумиться, когда они будут заполнять топливный бак автомобиля кофе!

Рост цен на энергоносители, экономические и экологические последствия подтолкнули “зеленые” технологии в жизнь.

Как выясняется, есть гораздо более необычные источники энергии, чем кукуруза и патока.

Вот некоторые необычные источники энергии, которые могут ежедневно запитывать бытовую технику:

Мертвые кошки

Очевидно, вряд ли найдется поставщик, продающий дохлых кошек по кило в среднем супермаркете, но это не значит, что они не являются надежным источником топлива.

Немецкий изобретатель по имени Доктор Кристиан Кох изобрел процесс, при котором старые шины, сорняки и животные трупы (в данном случае, дохлые кошки) используются для создания высококачественного био-дизельного топлива. Процесс производит примерно 2,5 литра дизельного топлива на кота. Изобретатель проехал не один км на своем автомобиле, питаемый таким необычным образом без каких-либо проблем.

Очевидно, защитники прав животных разъярены этим сценарием. Надо признать, что идея звучит слишком ужасной, но это технология для будущего.

Тепло тела человека

Традиционному способ использования энергии – естественное тепло тела человека!

Этот естественный источник энергии был реализован во многих странах, но Швеция имеет самый эффективный метод его использования.

Используется тепло тела человека, чтобы использовать.

Тепло тела, 250 000 пассажиров созданное толпой на железнодорожном вокзале Стокгольма (оживленный туристический центр в Скандинавии) огромно. Это тепло используется, чтобы дрейфовать и не упустить, но инженеры нашли способ использовать его и передавать в недавно отреставрированное офисное здание на улице.

Тепло, выделяемое пассажирами используется системами вентиляции станции и предназначено для нагрева воды в подземных резервуарах. Эта вода затем направляется в вентиляционные системы офиса, тем самым нагревая весь блок.

Кофейные отходы

Горячая чашка кофе утром дает стимул для деятельности для большинства. Однако, один и тот же кофе может использоваться также для топлива машинам.

Каждый год население планеты потребляет около 600 миллиардов чашек кофе. Средняя кофейня выбрасывает 10 кг использованного кофе каждый день. Тем не менее, выбрасываемая кофейная гуща на самом деле могут быть использована для производства био-дизельного топлива.

Студента-архитектор в Лондоне, утверждает, что создал первую компанию, начавшую индустриализацию кофе-отходов для переработки и производства био-дизельного топлива и продукцию для биомассы от ранее утилизированного ресурса.

Кофе-машины, несомненно, будут популярны среди хипстеров (стиль смешанный с винтажем и небрежностью).

Шоколад источник энергии

В популярном фильме утверждается что “жизнь-это как коробка шоколадных конфет: никогда не знаешь, что ты собираешься сделать”. С коробки шоколада можно получить топливо для машин.

Отходами, оставшимися от шоколадной фабрики на самом деле можно кормить бактерии, что приводит к образованию водорода. Водород является одним из самых известных видов топлива, так как его единственным побочным продуктом является вода.

Жир из шоколада также может быть преобразован в био-топливо и использоваться для питания гоночного автомобиля.

Энергия в танце

Каким бы ночным клубом не была бы танцевальная площадка, но её надо освещать.

Ряд танцевальных клубов в Японии уже реализовали эту технологию для того, чтобы сделать свои заведения самодостаточной.

Кинетическая энергия людей, ходьба или танцы могут быть преобразованы в электроэнергию, которая затем используется. Принцип в применении механической силы на пол, показывая прямой выход электричества от движений человека.

Эта концепция работает на принципе пьезоэлектричества. Пьезоэлектричество производится, когда толчок или давление прикладывается к объекту, которое затем может быть преобразовано в электричество.

Водоросли

Необычным источником энергии и наиболее перспективным вариантом в этом списке являются водоросли, которые могли бы реально заменить ископаемое топливо на нашей планете. Водоросли обладают большой теплотворной способностью (теплосодержанием), чем кукуруза или сахар, что делает их более эффективными в качестве источника топлива.

Эта идея была примерно с 1942 года, и с тех пор ученые активно работают над различными способами, чтобы использовать эти возможности.

Водоросли, как источник топлива могут быть высушены и использовать жирные кислоты, которые затем извлекаются. Эти жирные кислоты подвергаются этерификации в биодизельное топливо.

Это дикие и необычные источники энергии которые в наше время могут быть расценены как выбор сумасшедшего сейчас, но не для будущего человечества.

nikita . a . sergeev @ gmail . com

Актуальность темы

Современная жизнь просто немыслима без электричества – только представьте существование человечества без современной бытовой техники , аудио - и видеоаппаратуры, вечера со свечой и лучиной. Процесс получения и транспортировки электроэнергии трудоемок и дорогостоящ. Для выработки электричества необходимо топливо, а оно когда-нибудь закончится: и нефть, и уголь, и даже уран. Выход может быть в создании вечного термоядерного реактора, а получится ли его создать, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы - солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти дармового тока.

Исходя из этого мной выбрана следующая тема исследования «Необычное электричество».

Целью моей работы является выявление различных способов получения электроэнергии и экспериментальное подтверждение некоторых из них.

В начале исследования мной была выдвинута гипотеза: если электростанции получают электрический ток используя природные ресурсы, то возможно ли получение тока с помощью других необычных источников тока.

Задачи исследования:

1. Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

2. Получить необычные источники тока.

Методы исследования: анализ научной и учебной литературы, материалов сети Internet по выбранной теме, физический эксперимент.

Традиционные источники электрического тока

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция – электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции, гидроэлектро станции, атомные электростанции , а также приливные электростанции, ветроэлектростанции, геотермические электростанции .

Нетрадиционные источники электрического тока

Кроме традиционных источников тока существует множество нетрадиционных источников. Оказывается, электричество можно практически получать из всего, что угодно.

Из погоды

Эта идея пришла в голову американскому инженеру Энтони Мамо, когда он рассматривал карты погоды и увидел на них буквы «Н» и «В». Точно такие же мы видим по телевизору во время прогноза погоды. Буквами обозначены зоны низкого (Н) и высокого (В) давления. Инженер поднял архивы наблюдений и выяснил: в одних районах США давление, как правило, повышенное, а в других - пониженное. Так почему бы не соединить их трубой? Ведь тогда воздух из В-области будет дуть в Н-область и крутить турбину.

Увы, изобретатель умер. Но успел получить патент и создать фирму под названием «Холодная энергия», которая ныне реализует его идею - тянет трубу в штате Аризона. И планирует поставлять народу электричество по цене (на наши деньги) меньше копейки за киловатт-час.

Из живых деревьев

Каким образом дерево вырабатывает электроэнергию, никто толком объяснить не может. Но эффект есть.

«Убедиться просто, - говорит изобретатель Гордон Уодл. - Воткните алюминиевый стержень через кору в ствол живого дерева. А в почву рядом - медную трубку. Так, чтобы она вошла примерно на 20 сантиметров. Подсоедините вольтметр. Стрелка покажет, что между стержнем в стволе и зарытой трубкой есть потенциал - 0,8 - 1,2 вольта постоянного тока».

Вот эти вольты и намерена выкачивать специально созданная фирма MagCap Engineering из Массачусетса (США ). Инженеры уверены, что через несколько лет мы будем тянуть провода к ближайшим деревьям в парках и лесах, чтобы напитать дома электричеством. Конечно, не все так просто. Уодл создал хитрое устройство, которое фильтрует «деревянный» ток и повышает выходное напряжение. Его прототип уже дает 2 вольта. А в ближайшее время энтузиасты обещают 12 при силе тока в 1 ампер с каждого дерева. Но и это не предел. Оказывается, несколько воткнутых гвоздей повышают выход энергии. А размер электрического «зеленого друга» значения не имеет. Напряжение почему-то повышается и зимой, когда листья сброшены.

Из телерадиоэфира

Возможно, деревья черпают энергию из радиоволн. Ведь они несут не только информацию, но и энергию, которая пока пропадает даром.

С бесхозностью эфира взялась бороться гавайская компания Ambient Micro. Но без деревьев, а путем создания магнитных антенн и сопутствующих узлов, которые преобразовывают в постоянный ток пробегающие мимо радиосигналы. Конечно, речь идет о мизерной мощности в доли ватта. Но и такая пригодится для питания разнообразных электронных устройств, приборов, датчиков. Вместо нынешних батареек и аккумуляторов.

Из грязи

Еще один удивительный микроорганизм нашли Чарльз Милликен и Гарольд Мэй из медицинского университета Южной Каролины - так называемую десульфитобактерию. Она вырабатывает электричество, питаясь любой грязью - вплоть до ядовитой и нефтяной. Охотно ест и мусор. Даже если просто воткнуть в грязь с бактериями один электрод, а другой разместить в воде, появится электричество, которого хватит для работы компьютера.

«Пока у этих микроорганизмов есть пища, они способны поставлять энергию 24 часа в сутки 7 дней в неделю, - говорит доктор Милликен».

А такой «пищи» у человечества неисчерпаемые и возобновляемые запасы.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

Получение необычного источника тока

Изучив литературу, я узнал, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля. Я провел опыты с этими плодами и действительно получил ток. Рассмотрим эти опыты.

Для проведения опыта нам понадобится: несколько средних картофелин (около 10), медные провода, стальные или оцинкованные гвоздики (можно пластинки из набора по электричеству) и мультиметр.

Первым делом зачищаю каждый медный провод с обоих концов (снимаем изоляцию), к одному из концов провода прикручиваю гвоздь. Вставляем оцинкованный гвоздь в плод, втыкаем рядом с ним медный провод (убедитесь, что они не касаются друг друга, а то будет короткое замыкание). Таким образом, собираем аккумулятор из нескольких картофелин, последовательно их соединяя. После этого измеряем напряжение в цепи с помощью мультиметра. В моем опыте мультиметр показал 7,82В.

Аналогично можно получить электроэнергию из лимона и яблок, если вы используете цитрус, попытайтесь воткнуть гвоздь и проводок в одну и ту же дольку.

Почему же вырабатывается ток в плодах? Попробуем разобраться в этом на примере лимона.

Если воткнуть в плод два гвоздя из разных металлов, произойдет химическая реакция. Если цинк сможет отпустить от себя свои ионы, это позволит высвободить энергию, но также и потерять электроны. Если цинк подключен к меди в электрической цепи, электроны начнут двигаться по этой цепи и нейтрализуют ионы меди в лимоне. Этот процесс освобождает энергию, которая и преобразуется в электрическую.

Итак, после проведения опытов, я узнал, что электрический ток можно получить из фруктовых плодов и картофеля. Каждый фрукт вырабатывает разный по силе и напряжению электрический ток.

Самая большая сила тока в лимоне. Но так как мы живем в том климате, где лимоны не растут, да и яблоки не в достаточном количестве, то можно получать ток из картофеля, которого у нас вполне достаточно (это на будущее, когда электроэнергия будет очень дорогой).

Заключение

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

С помощью опыта показал, что можно получить электроэнергию из некоторых плодов, конечно это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить MP 3-плейер, мобильный телефон и др.).

13 открытая юношеская

научно-исследовательская конференции

имени С.С. Молодцова

Секция физика __

Исследовательская работа

Природное электричество

Гарифуллин Ильяс

4 д класс, МБОУ «Гимназия №2» имени Баки Урманче, г. Нижнекамск

Научные руководители:

Нугманова Алсу Саримовна,

Учитель физики высшей кв. категории

Петрунина Назиля Расимовна,

Учитель начальных классов первой кв. категории

Нижнекамск, 2015 г.

1 Введение……………………………………………………………………………………

I . Теоретическая часть

1.Источники электрического тока. История создания батарейки……………………….3

2. Традиционные источники электрического тока.…..……..………………………….…4

3. «Живые электростанции»…………………………………………………….…………..5 4.Нетрадиционные источники электрического тока ……………………………………..6

II . Экспериментальная часть

1.Об использовании фруктов и овощей для получения электричества………………….6

2.Получение необычного источника тока……………………………………………….7-8

3. Заключение ………………………………………………………………………………..9

Использованная литература………………………………………………………………10

Введение

Наша работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами .

Современная жизнь просто немыслима без электричества - только представьте существование человечества без современной бытовой технике, аудио- и видеоаппаратуры, вечера со свечой и лучиной. Процесс получения и транспортировки электроэнергии трудоемок и дорогостоящ. Для выработки электричества необходимо топливо, а оно когда-нибудь закончится: и нефть, и уголь, и даже уран. Выход может быть в создании вечного термоядерного реактора, а получится ли его создать, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы - солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти даром!

В настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет актуальное значение. Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.

Впервые о нетрадиционном использовании фруктов мы прочитали в книге Николая Носова. По замыслу писателя, Коротышки Винтик и Шпунтик, жившие в Цветочном городе, создали автомобиль, работающий на газировке с сиропом. В результате нам захотелось узнать как можно больше об электричестве.

Исходя из этого, мы выбрали следующую тему исследования «Природное электричество».

Целью моей работы является выявление различных способов получения электроэнергии и экспериментальное подтверждение некоторых из них.

В начале исследования мной была выдвинута следующая гипотеза: если электростанции получают электрический ток, используя природные ресурсы, то возможно ли получение тока с помощью других необычных источников тока.

Задачи исследования:

    Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

    Познакомиться с устройством батарейки и его изобретателями.

    Ознакомиться с ходом работы по получению необычного источника тока.

    Получить необычные источники тока.

Методы исследования: анализ научной и учебной литературы, экспериментальный метод, метод обработки результатов, метод сравнения.

I . Теоретическая часть.

1.Источники электрического тока. История создания батарейки.

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное.

Опыты Гальвани стали основой исследований другого итальянского ученого - Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение.

Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами.

Всего через год после этого, в 1803 году, русский физик Василий Петров для демонстрации электрической дуги собрал самую мощную химическую батарею, состоящую из 4200 медных и цинковых электродов. Выходное напряжение этого монстра достигало 2500 вольт. Впрочем, ничего принципиально нового в этом «вольтовом столбе» не было.

2. Традиционные источники электрического тока.

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), гидроаккумулирующие электростанции, атомные электростанции (АЭС). . А еще бывают «живые электростанции».

3. «Живые электростанции».

В природе есть группа животных, которых мы называем «живыми электростанциями».

Животные очень чувствительны к электрическому току. Даже незначительной силы ток для многих из них смертелен. Лошади погибают даже от сравнительно слабого напряжения в 50-60 вольт. А есть животные, которые не только обладают высокой устойчивостью к электрическому току, но и сами вырабатывают ток в своём теле. Это рыбы - электрические угри, скаты, и сомы. Настоящие живые электростанции!

Электрические угри, водящиеся в пресных водах Гвианы и Бразилии, могут вырабатывать электричество напряжением до 300 вольт, в зависимости от состояния и величины рыбы. Эти рыбы достигают 2-3 метров длины и веса 15-20 кг.

Источником тока служат особые электрические органы, расположенные двумя парами под кожей вдоль тела - под хвостовым плавником и на верхней части хвоста и спины. По внешнему виду такие органы представляют продолговатое тельце, состоящее из красновато-желтого студенистого вещества, разделённого на несколько тысяч плоских пластинок, ячеек-клеток, продольными и поперечными перегородками. Что-то вроде батареи. От спинного мозга к электрическому органу подходит более 200 нервных волокон, ответвления от которых идут к коже спины и хвоста. Прикосновение к спине или хвосту этой рыбы вызывает сильный разряд, который может мгновенно убить мелких животных и оглушить крупных животных и человека. Тем более, что в воде ток передаётся лучше. Оглушённые угрями крупные животные нередко тонут в воде.

Электрические органы – средство не только для защиты от врагов, но и для добычи пищи. Охотятся электрические угри ночью. Приблизившись к добыче, произвольно делает разряд своих «батарей», и всё живое – рыбы, лягушки, крабы - парализуются. Действие разряда передаётся на расстояние в 3-6 метров. Ему остаётся только заглотать оглушённую добычу. Израсходовав запас электрической энергии, рыба долгое время отдыхает и пополняет её, «заряжает» свои «батареи».

Рыбы - живые электростанции опасны. Электрические скаты - торпедо, которых много в Средиземном море, могут в течение 10-15 секунд давать до 150 разрядов в секунду с напряжением до 80 вольт. В некоторых странах люди прежде пользовались разрядами скатов для лечебных целей. В Древнем Риме врачи держали скатов у себя дома в больших аквариумах. Даже сейчас в средиземноморских странах можно видеть старичков, бродящих в мелкой воде в надежде на излечение от ревматизма разрядами электрического ската.

Кое - что об электрических рыбах…

Рыбы используют разряды:

    чтобы освещать свой путь;

    для защиты, нападения и оглушения жертвы;

    передают сигналы друг другу и обнаруживают заблаговременно препятствия.

4. Нетрадиционные источники электрического тока.

Кроме традиционных источников тока существует множество нетрадиционных источников. Оказывается, электричество можно практически получать из всего, что угодно. Нетрадиционные источники электрической энергии, где невосполнимые энергоресурсы практически не тратятся: ветроэнергетика, приливная энергетика, солнечная энергетика.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

II . Экспериментальная часть.

1.Об использовании фруктов и овощей для получения электричества.

Изучив литературу, я узнал, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля – сырого и вареного. Именно Израильские ученые исследователи в качестве источника энергии необычной батарейки предложили использовать вареный картофель, так как мощность устройства в этом случае по сравнению с сырым картофелем увеличится в 10 раз. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек.

2.Получение необычного источника тока.

Ученые утверждают, что если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи лимонов. Ведь в любом фрукте и овоще есть электричество, поскольку они заряжают нас, людей, энергией при их употреблении.

Но мы не привыкли верить всем на слово, поэтому решили проверить это на опыте.С целью доказательства гипотезы о том, что различные фрукты и овощи могут служить источниками электричества, мною было проделано несколько экспериментов. Были использованы фрукты: лимон, яблоко, огурец соленый, картофелину сырую и вареную;

    несколько медных пластин из набора по электростатике – это будет наш положительный полюс;

    оцинкованные пластины из того же набора – для создания отрицательного полюса;

    провода, зажимы;

    милливольтметры, вольтметры

    амперметры.

Большинство фруктов содержит в своем составе слабые растворы кислот. Именно поэтому их можно легко превратить в простейший гальванический элемент. Прежде всего, мы зачистили медный и цинковый электроды с помощью наждачной бумаги. А теперь достаточно их вставить в овощ или фрукт и получается «батарейка».

Результаты эксперимента мы занесли в таблицу:

Основа батарейки

Напряжение на электродах, В

Огурец соленый

Банан (с кожурой)

Банан (без кожурой)

Мандарин

Апельсин

Картофель

Вареный картофель

Вывод: Напряжение на электродах разное. Самое большое напряжение в соленых огурцах- 1,2 В. Если использовать не сырую, а вареную картошку, то напряжение тоже больше. Банан с кожурой дает результат 0,4 В, а банан без кожуры - 0 В. Значит, чтобы получить напряжение, банан должен быть с кожурой!

Вытаскивая медную и цинковую пластины из овощей и фруктов, мы обратили внимание на то, что они сильно окислились. Это значит, что кислота вступала в реакцию с цинком и медью. За счет этой химической реакции и протекал очень слабый электрический ток. Аналогично можно получить электроэнергию из лимона и яблок, если вы используете цитрус, попытайтесь воткнуть гвоздь и проводок в одну и ту же дольку.

Наблюдали за нашими «вкусными» батарейками мы в течение некоторого времени.

Сделали вывод : постепенно напряжение на всех «вкусных» батарейках уменьшается. До сих пор еще есть напряжение на яблоке и вареном картофеле. Но именно соленые огурцы мы хотели оставить до утра. Хотели узнать, насколько уменьшится ток, за ночь. Вот и результат: было 1,2 В, а к утру через 15 часов показывает также 1,2 В. В итоге мы пришли к выводу, чтобы уменьшился ток нужно наблюдать больше времени.

Результаты измеренного напряжения на батарейках занесли в таблицу:

Напряжение на электродах, В

Через 15 часов

Огурец соленый

Вывод: Ток постепенно уменьшается. Ток слишком мал, для того чтобы загорелась лампочка. Поэтому мы планируем в дальнейшем выяснить, какими способами можно увеличить силу тока в цепи и заставить лампочку светиться.

Музыкальный горшочек. А вы знаете, что цветочные горшочки умеют петь. Я этот эксперимент хочу вам предложить . (ПОКАЗ эксперимента с горшком).

Итак, после проведения опытов, я узнал, что электрический ток можно получить из фруктовых плодов и из овощей, а также бывают поющие цветки. Каждый фрукт и овощ вырабатывает разный по силе и напряжению электрический ток.

Выводы:

1. Изучили и проанализировали научную и учебную литературу об источниках электрического тока.

2.Познакомились с устройством батарейки и его изобретателями.

3. Изготовили овощные и фруктовые батарейки и получили необычные источники тока .

4.Научились определять напряжение внутри «вкусной» батарейки и силу тока создаваемую ею.

5.Обнаружили, что напряжение на зажимах батареи составленной из нескольких овощей растет, а ток уменьшается.

3. Заключение.

Для достижения цели моей работы решены все поставленные задачи исследования.

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнал много интересного о традиционных источниках тока - различного рода электростанциях.

Я с помощью опыта показал, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить MP 3-плейер, мобильный телефон и др.). Одновременное действие несколько таких батареек позволяет запустить стенные часы, пользоваться электронной игрой и карманным калькулятором. Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.

Мою работу можно будет продолжить: найти другие необычные источники тока.

Использованная литература:

1. Горев Л. А. Занимательные опыты по физике. М., «Просвещение», 1974

2. Перышкин А. В. Физика 8 кл.: Учебник для общеобразовательных учебных заведений – М.: Дрофа, 2002.

3. Энциклопедический словарь юного физика. -М.: Педагогика, 1991г О. Ф. Кабардин.

4.Энциклопедический словарь юного техника. -М.: Педагогика, 1980г

5.Справочные материалы по физике. -М.: Просвещение 1985.

6 Журнал «Наука и жизнь», №10 2004г.

7 А. К. Кикоин, И.К. Кикоин. Электродинамика. -М.: Наука 1976.

8 Кирилова И. Г. Книга для чтения по физике.- Москва: Просвещение 1986.

9 Журнал «Наука и жизнь», №11 2005г.

10. Н.В.Гулиа. Удивительная физика.- Москва: «Издательство НЦ ЭНАС» 2005

Интернет- ресурс.

1. Летающий ветрогенератор
Buoyant Airborne Turbine (BAT), огромный аэростат с ветряной турбиной, может набирать высоту до 600 метров. На этом уровне скорость ветра значительно выше, чем у поверхности земли, что позволяет удвоить выработку энергии.

2. Волновая электростанция Oyster

Желтый поплавок - надводная часть насоса, который находится на 15-метровой глубине в полукилометре от берега. Используя энергию волн, Oyster («Устрица») перегоняет воду на вполне обычную гидроэлектростанцию, расположенную на суше. Система способна вырабатывать до 800 кВт электроэнергии, обеспечивая светом и теплом до 80 домов.


3. Биотопливо на основе водорослей

Водоросли содержат до 75% натуральных масел, растут очень быстро, не нуждаются в пахотных землях или воде для полива. С одного акра (4047 кв. м.) «морской травы» можно получить от 18 до 27 тысяч литров биотоплива в год. Для сравнения: сахарный тростник при тех же исходных дает лишь 3600 литров биоэтанола.


4. Солнечные батареи в оконных стеклах

Стандартные солнечные батареи преобразуют энергию Солнца в электричество с эффективностью 10−20%, а их эксплуатация довольно затратна. Но недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.


5. Вулканическое электричество

Принцип работы геотермальной электростанции такой же, как и у теплоэлектростанции, только вместо угля используется тепло земных недр. Для добычи этого вида энергии идеальны районы с высокой вулканической активностью, где магма подходит близко к поверхности.


6. Сферическая солнечная батарея

Даже в облачный день заполненный жидкостью стеклянный шар Betaray работает в четыре раза эффективнее, чем обычная солнечная батарея. И даже в ясную ночь сфера не дремлет, извлекая энергию из лунного света.


7. Вирус М13

Ученым Национальной лаборатории имени Лоуренса в Беркли (Калифорния) удалось модифицировать вирус-бактериофаг М13 так, что он создает электрический заряд при механической деформации материала. Чтобы получить электричество, достаточно нажать на кнопку или провести пальцем по дисплею. Впрочем, пока максимальный заряд, который удалось получить «инфекционным путем», равен возможностям четверти микропальчиковой батарейки.


8. Торий

Торий - радиоактивный металл, похожий на уран, но способный давать в 90 раз больше энергии при распаде. В природе он встречается в 3-4 раза чаще, чем уран, а всего один грамм вещества по количеству выделяемого тепла эквивалентен 7400 галлонам (33640 литрам) бензина. 8 грамм тория хватит, чтобы автомобиль мог ехать более 100 лет или 1,6 млн км без дозаправки. В общем, компания Laser Power Systems объявила о начале работ над ториевым двигателем. Посмотрим-с!


9. Микроволновый двигатель

Как известно, космический корабль получает импульс для взлета за счет выброса и сгорания ракетного топлива. Основы физики попытался перечеркнуть Роджер Шойер. Его двигатель EMDrive (мы о нем писали) не нуждается в горючем, создавая тягу с помощью микроволн, которые отражаются от внутренних стенок герметичного контейнера. Впереди еще долгий путь: силы тяги такого мотора не хватает даже для того, чтобы сбросить со стола монету.


10. Международный экспериментальный термоядерный реактор (ITER)

Предназначение ITER- воссоздать процессы, происходящие внутри звезд. В противовес расщеплению ядра речь идет о безопасном и безотходном синтезе двух элементов. Получив 50 мегаватт энергии, ITER вернет 500 мегаватт - достаточно, чтобы обеспечить электричеством 130 000 домов. Запуск реактора, базирующегося на юге Франции, произойдет в начале 2030-х, а подключить его к энергетической сети получится не раньше 2040 года.